Log in

Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Having the advantages of a higher yield, lower cost and less environmental impact, lignin-containing cellulose nanofibrils (LCNFs) obtained by mechanically fibrillating unbleached pulps have been demonstrated to be a promising alternative to high-purity nanocellulose. In this study, the structural changes after four drying methods containing freeze-drying (FD), oven-drying (OD), centrifugal followed by vacuum-drying (CVD), and evaporation followed by vacuum-drying (EVD), and efficient reuse of LCNFs were extensively explored. It was found that the structural characteristics of LCNFs after drying were maintained by freeze drying with high lignin contents where the aggregation of fibrils was alleviated by lignin. The freeze-dried LCNFs were further redispersed by homogenizer in water, which exhibited excellent dispersion characteristics. In addition, the redispersed LCNFs were further assembled into PVA films to fabricate high-strength composites. The results showed that when the addition of redispersed LCNFs was up to 16.9%, the tensile strength and elongation at break of the as-prepared composite film increased by 325.2% and 335.2%, respectively. This study demonstrated a more sustainable approach to utilize LCNFs to produce biomass-based composite films than those of CNF-based composite films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21(6):4349–4358

    Article  CAS  Google Scholar 

  • Cao WH, Li J, Martí-Rosselló T et al (2019) Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures. J Energy Inst 92(5):1303–1312. https://doi.org/10.1016/j.joei.2018.10.004

    Article  CAS  Google Scholar 

  • Chen YM, Wang Y, Wan JQ et al (2009) Crystal and pore structure of wheat straw cellulose fiber during recycling[J]. Cellulose 17(2):329–338

    Article  Google Scholar 

  • Chen Y, Fan DB, Han YM et al (2018) Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose 25(11):6421–6431

    Article  CAS  Google Scholar 

  • Coleman JN, Cadek M, Blake R et al (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase[J]. Adv Funct Mater 14(8):791–798. https://doi.org/10.1002/adfm.200305200

    Article  CAS  Google Scholar 

  • Ding QJ, Zeng JS, Wang B et al (2018) Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure. Carbohyd Polym 186:73–81

    Article  CAS  Google Scholar 

  • Dizhbite T, Telysheva G, Jurkjane V et al (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317

    Article  CAS  Google Scholar 

  • Fu HC, Gao WH, Wang B et al (2019) Effect of lignin content on the microstructural characteristics of lignocellulose nanofibrils. Cellulose 27(3):1327–1340

    Article  Google Scholar 

  • Gao WH, Chen KF, **ang ZY et al (2013) Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Ind Crops Prod 44:152–157

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity [M], 2nd edn. Academic Press, London

    Google Scholar 

  • Gregorova A, Košíková B, Staško A (2007) Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene. J Appl Polym Sci 106:1626–1631. https://doi.org/10.1002/app.26687

    Article  CAS  Google Scholar 

  • Grüneberger F, Künniger T, Zimmermann T et al (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21(3):1313–1326

    Article  Google Scholar 

  • Hanif Z, Jeon H, Tran TH et al (2017) Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J of Polym Res 25(3):191

    Article  Google Scholar 

  • Huang DY, Wu M, Wang C et al (2020) Effect of partial dehydration on freeze-drying of aqueous nanocellulose suspension. ACS Sustain Chem Eng 8(30):11389–11395

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2014) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6(22):20075–20084

    Article  CAS  Google Scholar 

  • Jiang Y, Liu XY, Yang Q et al (2018) Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 25(11):6479–6494

    Article  CAS  Google Scholar 

  • Kwak HW, You J, Lee ME et al (2019) Prevention of cellulose nanofibril agglomeration during dehydration and enhancement of redispersibility by hydrophilic gelatin. Cellulose 26(7):4357–4369. https://doi.org/10.1007/s10570-019-02387-z

    Article  CAS  Google Scholar 

  • Lanzalunga O, Bietti MJ (2000) Photo- and radiation chemical induced degradation of lignin model compounds. J of Photochem and Photobiol B 56:85–108

    Article  CAS  Google Scholar 

  • Lei ZH, Wang SD, Fu HC et al (2019) Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from camellia oleifera shell. Bioresour Technol 282:228–235

    Article  CAS  Google Scholar 

  • Li JP, Wang B, Ge Z et al (2019) Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability. ACS Appl Mater Interfaces 11(42):9088–39099. https://doi.org/10.1021/acsami.9b13675

    Article  CAS  Google Scholar 

  • Li PF, Zeng JS, Wang B et al (2020) Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohyd Polym 247:116721

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications[J]. Polymer 49(5):1285–1296

    Article  CAS  Google Scholar 

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers[J]. J Appl Polym Sci 109(6):4065–4074. https://doi.org/10.1002/app.28623

    Article  CAS  Google Scholar 

  • Mo WX, Ke K, Shen XN et al (2020) The influence of “thermal drying pretreatment” on enzymatic hydrolysis of cellulose and xylan in poplar fibers with high lignin content. Carbohyd Polym 228:115400

    Article  CAS  Google Scholar 

  • Peng YC, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  Google Scholar 

  • Peng Y, Nair SS, Chen HY et al (2018) Effects of lignin content on mechanical and thermal properties of polypropylene composites reinforced with micro particles of spray dried cellulose nanofibrils. ACS Sustain Chem Eng 6:11078–11086

    Article  CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites[J]. Eur Polym J 44(8):2489–2498

    Article  CAS  Google Scholar 

  • Silva LE, Dos Santos AA, Torres L et al (2021) Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohyd Polym 252:117165

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Velasquez-Cock J, Gomez HB, Posada P et al (2018) Poly (vinyl alcohol) as a cap** agent in oven dried cellulose nanofibrils. Carbohyd Polym 179:118–125

    Article  CAS  Google Scholar 

  • Wang FK, Akimov YA, Khoo EH et al (2015) π-π interactions mediated self-assembly of gold nanoparticles into single crystalline superlattices in solution. RSC Adv 5:90766–90771. https://doi.org/10.1039/C5RA17628J

    Article  CAS  Google Scholar 

  • Wang QQ, Yao Q, Liu J et al (2019) Processing nanocellulose to bulk materials: a review. Cellulose 26(13–14):7585–7617

    Article  CAS  Google Scholar 

  • Wu ZN, Liu JL, Li YC et al (2015) Self-assembly of nanoclusters into mono-, few-, and multilayered sheets via dipole-induced asymmetric van der Waals attraction. ACS Nano 9:6315–6323. https://doi.org/10.1021/acsnano.5b01823

    Article  CAS  PubMed  Google Scholar 

  • **ong FQ, Han YM, Wang SQ et al (2017) Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain Chem Eng 5:2273–2281. https://doi.org/10.1021/acssuschemeng.6b02585

    Article  CAS  Google Scholar 

  • Yang MY, Zhang X, Guan SY et al (2020) Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films. Int J Biol Macromol 158:1259–1267. https://doi.org/10.1016/j.ijbiomac.2020.05.044

    Article  CAS  Google Scholar 

  • Zhang N, Tao P, Lu YX et al (2019) Effect of lignin on the thermal stability of cellulose nanofibrils. Cellulose 26:7823–7835

    Article  CAS  Google Scholar 

  • Zheng YH, Rosa L, Thai T et al (2015) Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity. J Mater Chem A 3(1):240–249

    Article  CAS  Google Scholar 

  • Zhou L, He H, Li MC et al (2016) Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohyd Polym 153:445–454

    Article  CAS  Google Scholar 

  • Zhu SY, Xu J, Cheng Z et al (2020) Catalytic transformation of cellulose into short rod-like cellulose nanofibers and platform chemicals over lignin-based solid acid. Appl Catal B 268:118732

    Article  Google Scholar 

Download references

Funding

The authors are grateful for the support of the National Natural Science Foundation of China (22078113), Natural Science Foundation of Guangdong Province (2019A1515010996), China Postdoctoral Science Foundation (BX20200134 &2019TQ0100), and the Fundamental Research Funds for the Central Universities (2019MS085), Science and technology project of Guangzhou (202102080416, 202102020713), Science and Technology Plan Research Project of Shenzhen (JSGG20170822161444090).

Author information

Authors and Affiliations

Authors

Contributions

HF, YL, JL, JZ and JL conducted the experiments. BW and KC conceived and idea and wrote the manuscript. All authors proofread the manuscript.

Corresponding authors

Correspondence to Bin Wang or **peng Li.

Ethics declarations

Conflicts of Interest

The authors declare that they do not have any conflict of interest.

Ethical approval

This study does not include any studies conducted by any author on human participants or animals. The authors claim the compliance with the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1738 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Li, Y., Wang, B. et al. Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film. Cellulose 28, 7749–7764 (2021). https://doi.org/10.1007/s10570-021-04041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04041-z

Keywords

Navigation