Log in

Transition metal assisted ionothermal carbonization of cellulose towards high yield and recycling

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A sustainable natural polymer, cellulose, has been used as precursor for producing carbonaceous materials. Ionothermal carbonization (ITC) in ionic liquid (IL) could transform biomass into functional carbon materials at a relatively low temperature. In order to improve the ITC carbon yields and structures, the first raw transition metal chlorides were added into IL, 1-Butyl-3-methyl-imidazole chloride (BmimCl), and their catalyzing effects were compared. It is found that the catalyzing effects of transition metal chlorides are mainly correlated to their cation size. With the addition of 0.5wt% NiCl2 (based on IL), a high carbon yield of 94wt% is obtained. Additionally, the bio-based carbonaceous materials exhibit a higher graphitization degree with the addition of metal chloride. Furthermore, the IL shows good cyclability, and the carbon yield remains to be higher than 80 wt% after 5 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antonietti M, Mullen K (2010) Carbon: the sixth element. Adv Mater 22:787

    Article  CAS  PubMed  Google Scholar 

  • Bayu A, Guan G, Karnjanakom S, Hao X, Kusakabe K, Abudula A (2016) Catalytic synthesis of levulinic acid and formic acid from glucose in choline chloride aqueous solution. ChemistrySelect 1:180–188

    Article  CAS  Google Scholar 

  • Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22:767–784

    Article  CAS  Google Scholar 

  • Brzeczek-Szafran A, Erfurt K, Blacha-Grzechnik A, Krzywiecki M, Boncel S, Chrobok A (2019) Carbohydrate ionic liquids and salts as all-in-one precursors for N-doped carbon. ACS Sustain Chem Eng 7:19880–19888

    Article  CAS  Google Scholar 

  • Chiappe C, Rodriguez Douton MJ, Mezzetta A, Pomelli CS, Assanelli G, de Angelis AR (2017) Recycle and extraction: cornerstones for an efficient conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. ACS Sustain Chem Eng 5:5529–5536

    Article  CAS  Google Scholar 

  • Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430:1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Li M, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854

    Article  CAS  Google Scholar 

  • Falco C, Baccile N, Titirici MM (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13:3273–3281

    Article  CAS  Google Scholar 

  • Fang J, Zheng W, Liu K, Li H, Li C (2020) Molecular design and experimental study on the synergistic catalysis of cellulose into 5-hydroxymethylfurfural with Brønsted–Lewis acidic ionic liquids. Chem Eng J 385

  • Gaikwad A, Chakraborty S (2014) Mixing and temperature effects on the kinetics of alkali metal catalyzed, ionic liquid based batch conversion of cellulose to fuel products. Chem Eng J 240:109–115

    Article  CAS  Google Scholar 

  • Gong J, Antonietti M, Yuan J (2017) Poly(ionic liquid)-derived carbon with site-specific n-do** and biphasic heterojunction for enhanced CO2 capture and sensing. Angew Chem Int Ed Engl 56:7557–7563

    Article  CAS  PubMed  Google Scholar 

  • He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed Engl 55:12582–12594

    Article  CAS  PubMed  Google Scholar 

  • Hermanutz F, Vocht MP, Panzier N, Buchmeiser MR (2018) Processing of cellulose using ionic liquids. Macromol Mater Eng 304:1800450

    Article  Google Scholar 

  • Hitoshi Ishida K-iS (1996) Catalytic activity of lanthanoidec (III) ions for dehydration of D-glucose to 5(hydroxymethyl) furfural. J Mol Catal A Chem 112:L163–L165

    Article  Google Scholar 

  • Hu L et al (2020) Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renew Sustain Energy Rev 134:110317

    Article  CAS  Google Scholar 

  • Hu SQ, Zhang ZF, Song JL, Zhou YX, Han BX (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11:1746–1749

    Article  CAS  Google Scholar 

  • Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  • Kang X, Sun X, Han B (2016) Synthesis of functional nanomaterials in ionic liquids. Adv Mater 28:1011–1030

    Article  CAS  PubMed  Google Scholar 

  • Kei-ichi Seri YI, Ishida Hitoshi (2001) Catalytic activity of lanthanide (III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Jpn 74:1145–1150

    Article  Google Scholar 

  • Lee JS, Mayes RT, Luo H, Dai S (2010) Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48:3364–3368

    Article  CAS  Google Scholar 

  • Leng E, Mao M, Peng Y, Li X, Gong X, Zhang Y (2019) The direct conversion of cellulose into 5-hydroxymethylfurfural with CrCl3 composite catalyst in ionic liquid under mild conditions. ChemistrySelect 4:181–189

    Article  CAS  Google Scholar 

  • Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47:3696–3717

    Article  CAS  PubMed  Google Scholar 

  • Lin X-X, Tan B, Peng L, Wu Z-F, **e Z-L (2016) Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors. J Mater Chem A 4:4497–4505

    Article  CAS  Google Scholar 

  • Liu Y, Huang B, Lin X, **e Z (2017) Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J Mater Chem A 5:13009–13018

    Article  CAS  Google Scholar 

  • Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142

    Article  CAS  PubMed  Google Scholar 

  • Men YJ, Siebenburger M, Qiu XL, Antonietti M, Yuan JY (2013) Low fractions of ionic liquid or poly (ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons. J Mater Chem A 1:11887–11893

    Article  CAS  Google Scholar 

  • Morris RE (2009) Ionothermal synthesis–ionic liquids as functional solvents in the preparation of crystalline materials. Chem Commun (Camb) 21:2990–2998

    Article  Google Scholar 

  • Morris RE, Weigel SJ (1997) The synthesis of molecular sieves from non-aqueous solvents. Chem Soc Rev 26:309–317

    Article  CAS  Google Scholar 

  • Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal 2:930–934

    Article  Google Scholar 

  • Paraknowitsch JP, Zhang J, Su D, Thomas A, Antonietti M (2010) Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv Mater 22:87–92

    Article  CAS  PubMed  Google Scholar 

  • Parveen F, Patra T, Upadhyayula S (2018) A structure–activity relationship study using DFT analysis of Bronsted-Lewis acidic ionic liquids and synergistic effect of dual acidity in one-pot conversion of glucose to value-added chemicals. New J Chem 42:1423–1430

    Article  CAS  Google Scholar 

  • Pidko EA, Degirmenci V, Hensen EJM (2012) On the mechanism of lewis acid catalyzed glucose transformations in ionic liquids. ChemCatChem 4:1263–1271

    Article  CAS  Google Scholar 

  • Qi X, Li L, Tan T, Chen W, Smith RL Jr (2013) Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose. Environ Sci Technol 47:2792–2798

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL Jr (2009a) Efficient catalytic conversion of fructose into 5-hydroxymethylfurfural in ionic liquids at room temperature. Chemsuschem 2:944–946

    Article  CAS  PubMed  Google Scholar 

  • Qi XH, Watanabe M, Aida TM, Smith RL (2009b) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  • Stahlberg T, Sorensen MG, Riisager A (2010) Direct conversion of glucose to 5-(hydroxymethyl) furfural in ionic liquids with lanthanide catalysts. Green Chem 12:321–325

    Article  Google Scholar 

  • Su Y, Brown HM, Huang X, Zhou X-d, Amonette JE, Zhang ZC (2009) Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl Catal A 361:117–122

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Song H, Chou L (2010) Hydrolysis of cellulose by using catalytic amounts of FeCl2 in ionic liquids. Chemsuschem 3:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Song H, Chou L (2011a) Catalytic conversion of cellulose to chemicals in ionic liquid. Carbohydr Res 346:58–63

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Song H, Chou L (2012) Efficient conversion of cellulose into furans catalyzed by metal ions in ionic liquids. J Mol Catal A: Chem 357:11–18

    Article  CAS  Google Scholar 

  • Tao F, Song H, Yang J, Chou L (2011b) Catalytic hydrolysis of cellulose into furans in MnCl2–ionic liquid system. Carbohyd Polym 85:363–368

    Article  CAS  Google Scholar 

  • Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212

    Article  CAS  Google Scholar 

  • **e ZL, Su DS (2015) Ionic liquid based approaches to carbon materials synthesis. Eur J Inorg Chem 2015:1137–1147

    Article  CAS  Google Scholar 

  • **e ZL, White RJ, Weber J, Taubert A, Titirici MM (2011) Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. J Mater Chem 21:7434–7442

    Article  CAS  Google Scholar 

  • Yang D-P et al (2019) Biomass-derived carbonaceous materials: recent progress in synthetic approaches, advantages, and applications. ACS Sustain Chem Eng 7:4564–4585

    Article  CAS  Google Scholar 

  • Zhang P et al (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mater Interfaces 6:12515–12522

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yuan J, Fellinger TP, Antonietti M, Li H, Wang Y (2013) Improving hydrothermal carbonization by using poly (ionic liquid)s. Angew Chem Int Ed Engl 52:6028–6032

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pidko EA, Hensen EJ (2011) Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chemistry 17:5281–5288

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, He Y, Ma Z, Liang R, Wu T, Wu Y (2015) One-step degradation of cellulose to 5-hydroxymethylfurfural in ionic liquid under mild conditions. Carbohydr Polym 117:694–700

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liang R, Ma Z, Wu T, Wu Y (2013) Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour Technol 129:450–455

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhang S, Li Z, Zhang Z, Liu R, Yun J (2019) WCl6 catalyzed cellulose degradation at 80 °C and lower in [BMIM]Cl. Carbohydr Polym 212:289–296

    Article  CAS  PubMed  Google Scholar 

  • Zhou X et al (2017) Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J Mater Chem A 5:12958–12968

    Article  CAS  Google Scholar 

  • Zhu CH et al (2019) Tandem conversion of fructose to 2,5-dimethylfuran with the aid of ionic liquids. Acs Sustain Chem Eng 7:16026–16040

    Article  CAS  Google Scholar 

  • Zhuang X, Zhan H, Huang Y, Song Y, Yin X, Wu C (2018) Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC): Upgrading mechanism in relation to coalification process and combustion behavior. Bioresour Technol 267:17–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by One Hundred Person Project of the Shanxi province, Science Foundation of Shanxi Province, China (Grant Nos. 201903D121006 and 201901D111006ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Liu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Yu, Y., He, Q. et al. Transition metal assisted ionothermal carbonization of cellulose towards high yield and recycling. Cellulose 28, 4025–4037 (2021). https://doi.org/10.1007/s10570-021-03808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03808-8

Keywords

Navigation