Log in

Incorporating graphene oxide into biomimetic nano-microfibrous cellulose scaffolds for enhanced breast cancer cell behavior

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The impact of graphene oxide (GO) on normal cells has been widely investigated. However, much less is known on its effect on cancer cells. Herein, GO nanosheets were incorporated into electrospun cellulose acetate (CA) microfibers. The GO-incorporated CA (GO/CA) microfibers were combined with bacterial cellulose (BC) nanofibers via in situ biosynthesis to obtain the nano-microfibrous scaffolds. The GO/CA–BC scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The GO/CA–BC scaffolds were used for breast cancer cell culture to evaluate the effect of GO on cancer cell behavior. Fluorescence images revealed large multicellular clusters on the surface of GO/CA–BC scaffolds. Compared to the bare CA–BC scaffold, the GO/CA–BC scaffolds not only showed enhanced mechanical properties but also improved cell proliferation. It is expected that the GO/CA–BC scaffolds would provide a suitable microenvironment for the culture of cancer cells which is necessary for drug screening and cell biology study.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboamera NM, Mohamed A, Salama A, Osman TA, Khattab A (2018) An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers. Cellulose 25(7):4155–4166

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Shirazian SA, Rahighi R (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77. https://doi.org/10.1016/j.carbon.2015.06.079

    Article  CAS  Google Scholar 

  • Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng, C 48:384–390. https://doi.org/10.1016/j.msec.2014.12.039

    Article  CAS  Google Scholar 

  • Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32(32):8161–8171. https://doi.org/10.1016/j.biomaterials.2011.07.045

    Article  PubMed  CAS  Google Scholar 

  • Baldino L, Sarno M, Cardea S, Irusta S, Ciambelli P, Santamaria J, Reverchon E (2015) Formation of cellulose acetate–graphene oxide nanocomposites by supercritical CO2 assisted phase inversion. Ind Eng Chem Res 54(33):8147–8156

    Article  CAS  Google Scholar 

  • Blanton TN, Majumdar D (2013) Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. Powder Diffr 28(2):68–71

    Article  CAS  Google Scholar 

  • Cao L, Zhang F, Wang QG, Wu XF (2017) Fabrication of chitosan/graphene oxide polymer nanofiber and its biocompatibility for cartilage tissue engineering. Mater Sci Eng, C 79:697–701

    Article  CAS  Google Scholar 

  • Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210. https://doi.org/10.1016/j.toxlet.2010.11.016

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561

    Article  CAS  Google Scholar 

  • Collartdutilleul PY, Secret E, Panayotov I, Deville DPD, Martínpalma RJ, Torrescosta V, Martin M, Gergely C, Durand JO, Cunin F (2014) Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS Appl Mater Inter 6(3):1719–1728

    Article  CAS  Google Scholar 

  • Da C, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  Google Scholar 

  • Depan D, Girase B, Shah JS, Misra RDK (2011) Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445. https://doi.org/10.1016/j.actbio.2011.05.019

    Article  PubMed  CAS  Google Scholar 

  • Dorris GM, Gray DG (1978) Surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cell Chem Technol 61:721–734

    Google Scholar 

  • Du XY, Li Q, Wu G, Chen S (2019) Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater. https://doi.org/10.1002/adma.201903733

    Article  PubMed  Google Scholar 

  • Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, Zhang FB (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493. https://doi.org/10.1002/adma.200801306

    Article  CAS  Google Scholar 

  • Fu C, Bai HT, Zhu JQ, Niu ZH, Wang Y, Li JN, Yang XY, Bai YS (2017) Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS ONE. https://doi.org/10.1371/journal.pone.0188352

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli C, Parisi L, Piergianni M, Smerieri A, Passeri G, Guizzardi S, Costa F, Lumetti S, Manfredi E, Macaluso GM (2016) Improved scaffold biocompatibility through anti-fibronectin aptamer functionalization. Acta Biomater 42:147–156

    Article  CAS  Google Scholar 

  • He JX, Tang YY, Wang SY (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iran Polym J 16(12):807–818

    CAS  Google Scholar 

  • Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V (2008) 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm 5(5):849–862

    Article  CAS  Google Scholar 

  • ** L, Zeng Z, Kuddannaya S, Yue D, Bao J, Wang Z, Zhang Y (2015) Synergistic effects of a novel free-standing reduced graphene oxide film and surface coating fibronectin on morphology, adhesion and proliferation of mesenchymal stem cells. J Mater Chem B 3(21):4338–4344. https://doi.org/10.1039/c5tb00295h

    Article  PubMed  CAS  Google Scholar 

  • Kabiri R, Namazi H (2014) Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor. Cellulose 21(5):3527–3539. https://doi.org/10.1007/s10570-014-0366-4

    Article  CAS  Google Scholar 

  • Kazantseva J, Ivanov R, Gasik M, Neuman T, Hussainova I (2018) Graphene-augmented nanofiber scaffolds trigger gene expression switching of four cancer cell types. ACS Biomater Sci Eng 4(5):1622–1629. https://doi.org/10.1021/acsbiomaterials.8b00228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenry Chaudhuri PK, Loh KP, Lim CT (2016) Selective accelerated proliferation of malignant breast cancer cells on planar graphene oxide films. ACS Nano 10(3):3424–3434. https://doi.org/10.1021/acsnano.5b07409

    Article  PubMed  CAS  Google Scholar 

  • Kenry Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250. https://doi.org/10.1016/j.biomaterials.2017.10.004

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Yang K, Lee JS, Hwang YH, Park H-J, Park KI, Lee DY, Cho S-W (2017) Enhanced self-renewal and accelerated differentiation of human fetal neural stem cells using graphene oxide nanoparticles. Macromol Biosci 17(8):1600540. https://doi.org/10.1002/mabi.201600540

    Article  CAS  Google Scholar 

  • Layek RK, Ramakrishnan KR, Sarlin E, Orell O, Kanerva M, Vuorinen J, Honkanen M (2018) Layered structure graphene oxide/methylcellulose composites with enhanced mechanical and gas barrier properties. J Mater Chem A 6(27):13203–13214

    Article  CAS  Google Scholar 

  • Li G, Zhao Y, Zhang L, Gao M, Kong Y, Yang Y (2016) Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on schwann cells attachment and proliferation. Colloid Surf B 143:547–556. https://doi.org/10.1016/j.colsurfb.2016.03.079

    Article  CAS  Google Scholar 

  • Liang CY, Luo YC, Yang GD, **a D, Liu L, Zhang X, Wang H (2018) Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res Lett 13:1–10. https://doi.org/10.1186/s11671-018-2432-6

    Article  CAS  Google Scholar 

  • Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Inter 3(7):2607–2615. https://doi.org/10.1021/am200428v

    Article  CAS  Google Scholar 

  • Liu HQ, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Liu Y, Park M, Shin HK, Pant B, Choi J, Park YW, Lee JY, Park S-J, Kim H-Y (2014) Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J Ind Eng Chem 20(6):4415–4420. https://doi.org/10.1016/j.jiec.2014.02.009

    Article  CAS  Google Scholar 

  • Liu X, Shen H, Song S, Chen W, Zhang Z (2017) Accelerated biomineralization of graphene oxide—incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis. Colloid Surf B 159:251–258

    Article  CAS  Google Scholar 

  • Luo H, Ao H, Li G, Li W, **ong G, Zhu Y, Wan Y (2017) Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254

    Article  Google Scholar 

  • Luo H, Dong J, Yao F, Yang Z, Li W, Wang J, Xu X, Hu J, Wan Y (2018a) Layer-by-layer assembled bacterial cellulose/graphene oxide hydrogels with extremely enhanced mechanical properties. Nano Micro Lett 10(3):42

    Article  CAS  Google Scholar 

  • Luo H, **ong P, **e J, Yang Z, Huang Y, Hu J, Wan Y, Xu Y (2018b) Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors. Adv Funct Mater 28:1803075. https://doi.org/10.1002/adfm.201803075

    Article  CAS  Google Scholar 

  • Mazaheri M, Akhavan O, Simchi A (2014) Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci 301:456–462. https://doi.org/10.1016/j.apsusc.2014.02.099

    Article  CAS  Google Scholar 

  • Mohammadrezaei D, Golzar H, Rezai Rad M, Omidi M, Rashedi H, Yazdian F, Khojasteh A, Tayebi L (2018) In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering: a systematic review. J Biomed Mater Res, Part A 106(8):2284–2343. https://doi.org/10.1002/jbm.a.36422

    Article  CAS  Google Scholar 

  • Mu J, Zhou Y, Bu X, Zhang T (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4(5):429–434

    Article  CAS  Google Scholar 

  • Ordikhani F, Ramezani Farani M, Dehghani M, Tamjid E, Simchi A (2015) Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 84:91–102. https://doi.org/10.1016/j.carbon.2014.11.052

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  Google Scholar 

  • Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhães FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films. Polym Int 62(1):33–40

    Article  CAS  Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  CAS  Google Scholar 

  • Qi YY, Tai ZX, Sun DF, Chen JT, Ma HB, Yan XB, Liu B, Xue QJ (2013) Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci 127(3):1885–1894. https://doi.org/10.1002/app.37924

    Article  CAS  Google Scholar 

  • Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461. https://doi.org/10.1016/j.biomaterials.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  • Shao WL, Sang F, Shu jie HE, Qian JY, Qiang LI, Wang Q (2016) Preparation and characterization of bone-like biomimetic electrospun poly L-lactic acid nanofibers enhanced by graphene oxide. J Mater Sci Eng 34(4):535–539

    Google Scholar 

  • Si H, Luo H, **ong G, Yang Z, Raman SR, Guo R, Wan Y (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35(9):1706–1711

    Article  CAS  Google Scholar 

  • Sims-Mourtada J, Niamat RA, Samuel S, Eskridge C, Kmiec EB (2014) Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int J Nanomed 9:995–1003. https://doi.org/10.2147/ijn.s55720

    Article  Google Scholar 

  • Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261. https://doi.org/10.1023/a:1009211927183

    Article  CAS  Google Scholar 

  • Uddin ME, Layek RK, Kim HY, Kim NH, Hui D, Lee JH (2016) Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Compos Part B Eng 90:223–231

    Article  CAS  Google Scholar 

  • Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310

    Article  CAS  Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864. https://doi.org/10.1016/j.msec.2006.10.002

    Article  CAS  Google Scholar 

  • Wan YZ, Yang ZW, **ong GY, Guo RS, Liu Z, Luo HL (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419

    Article  CAS  Google Scholar 

  • Wan YZ, Cui T, Zhang QC, Yang ZW, Yao FL, Luo HL (2018) Submicrofiber-incorporated 3D bacterial cellulose nanofibrous scaffolds with enhanced cell performance. Macromol Mater Eng 303(11):1800316. https://doi.org/10.1002/mame.201800316

    Article  CAS  Google Scholar 

  • Wojtoniszak M, Chen X, Kalenczuk RJ, Wajda A, Lapczuk J, Kurzewski M, Drozdzik M, Chu PK, Borowiak-Palen E (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloid Surf B 89:79–85. https://doi.org/10.1016/j.colsurfb.2011.08.026

    Article  CAS  Google Scholar 

  • Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotech Adv 32(7):1256–1268

    Article  CAS  Google Scholar 

  • Xu Y, Cui W, Zhang Y, Zhou P, Gu Y, Shen X, Li B, Chen L (2017) Hierarchical micro/nanofibrous bioscaffolds for structural tissue regeneration. Adv Healthc Mater 6(13):1601457. https://doi.org/10.1002/adhm.201601457

    Article  CAS  Google Scholar 

  • Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72(12):1459–1476

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant nos. 51572187, 51973058, 31660264, 31870963), the Key Research and Development Program of Jiangxi Province (No. 20192ACB80008), and the Youth Science Foundation of Jiangxi Province (No. 20181BAB216010), and Key Project of Natural Science Foundation of Jiangxi Province (No. 20161ACB20018).

Funding

There has been no financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Luo.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Lin, Z., Zhang, Q. et al. Incorporating graphene oxide into biomimetic nano-microfibrous cellulose scaffolds for enhanced breast cancer cell behavior. Cellulose 27, 4471–4485 (2020). https://doi.org/10.1007/s10570-020-03078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03078-w

Keywords

Navigation