Log in

Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, bacterial cellulose (BC) was produced by Gluconacetobacter hansenii and Gluconacetobacter xylinum using citrus pulp water (CPW) and coconut water (CW). The productivity and the characteristics of the BCs produced by different strains and media were investigated. The results showed that BC production could reach more than 8.0 g DW L−1 by both G. hansenii and G. xylinum (8.42 ± 0.54 and 8.77 ± 0.64 g L−1) using CPW medium, which was close to the industrial level (9.91 ± 0.42 g L−1) by G. xylinum in CW medium. Therefore, CPW medium had strong universal utilization ability for BC production by both G. hansenii and G. xylinum. On the other hand, BC produced by G. hansenii in CPW medium had low hardness and high water holding capacity, and the preferred orientation of microfiber crystallites in BCs obtained by G. hansenii and G. xylinum using CPW was different. This difference enabled the production of BC products with different physicochemical features based on the requirements. In addition, the economics of BC production using CPW and CW as the raw fermentation materials was analyzed and compared, and the result indicated that the former was more economical and would be a promising candidate for producing BC. Finally, producing BC using CPW to replace the traditional CW medium would expand the raw material collection regions, reduce transportation cost, and realize BC products diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061

    CAS  PubMed  Google Scholar 

  • Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818

    Article  CAS  Google Scholar 

  • Bi JC, Liu SX, Li CF, Li J, Liu LX, Deng J, Yang YC (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117:1305–1311

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Çakar F, Kat G, Özer I, Demirbağ DD, Şahin F, Aytekin GÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40

    Article  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411

    Article  CAS  Google Scholar 

  • Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453

    Article  CAS  Google Scholar 

  • Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym 94(1):12–16

    Article  CAS  Google Scholar 

  • Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119

    Google Scholar 

  • Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pulp using Komagataeibacter xylinus. Carbohydr Polym 151:1068–1072

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  • Huang C, Guo HJ, **ong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202

    Article  CAS  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188

    Article  CAS  Google Scholar 

  • Jozala GF, de Lencastre-Novaes LC, Lopes GM, de Carvalho S-EV, Mazzola PG, Pessoa-Jr G, Grotto D, Gerenutti M, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072

    Article  CAS  Google Scholar 

  • Kelebek H (2010) Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Ind Crop Prod 32:269–274

    Article  Google Scholar 

  • Kurosumi G, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol–bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B 86(2):444–452

    Article  Google Scholar 

  • Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523

    Article  CAS  Google Scholar 

  • Nayar NM (2017) The coconut in the world. In: The coconut. Academic Press, Salt Lake City, pp 1–8

    Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K (2015) Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. Biotech 5(6):1067–1073

    Google Scholar 

  • Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Polym Chem 42(3):463–470

    Article  CAS  Google Scholar 

  • Setyawati MI, Chien L, Lee C (2007) Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production. J Biotechnol 132(1):38–43

    Article  CAS  Google Scholar 

  • Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15(1):110–118

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Shan Y (2016) Comprehensive utilization of citrus by-product. Academic Press, Elsevier, New York, pp 86–91

    Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8

    Article  CAS  Google Scholar 

  • Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33(8):1547–1571

    Article  CAS  Google Scholar 

  • Takai M, Tsuta Y, Watanabe S (1975) Biosynthesis of cellulose by Acetobacter xylinum. I. Characterizations of bacterial cellulose. Polym J 7(2):137–146

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter Xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261

    Article  CAS  Google Scholar 

  • USDG (2015) Citrus fruit 2015 summary. http://www.usdg.gov. Available in Sept 2015

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200

    Article  CAS  Google Scholar 

  • Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121

    Article  CAS  Google Scholar 

  • Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665

    Article  CAS  Google Scholar 

  • Yang Y, Jia J, **ng J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017

    Article  CAS  Google Scholar 

  • Yang XY, Huang C, Guo HJ, **ong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2014) Bacterial Cellulose Production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotech 46(1):39–43

    Article  CAS  Google Scholar 

  • Yang Y, Li C, Deng J, Liu L, Hu Q (2015) Changes of chemical composition and microbial community during naturally fermented coconut water used in nata de coco production. Food Res Dev 36(21):168–171

    Google Scholar 

  • Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane—a new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46(10):2054–2058

    Article  CAS  Google Scholar 

  • Yue YY, Zhou CJ, French AD, **a G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Lihua Fan, a Research Scientist at the Agriculture and Agri-Food Canada, and her technician, Craig Doucette, for their technical suggestions and language revision. This work was supported by the Ministry of Agriculture in China (Grant No. 201303076-05) and National Natural Science Foundation of China (No. 31401676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Lu, S. & Yang, Y. Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii. Cellulose 25, 6977–6988 (2018). https://doi.org/10.1007/s10570-018-2056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2056-0

Keywords

Navigation