Log in

Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, low density and high porosity aerogels were produced through freeze drying of cellulose nanofiber (CNF) dispersions with 0.6, 0.9 and 1.2 wt% concentration and modified via chemical vapor deposition (CVD) of hexadecyltrimethoxylan (HDTMS) to absorb and remove oil and organic pollutants from the water. Aergels were evaluated by density and porosity measurement, BET analysis, scanning electron microscopy, contact angle, oil absorption capacity and mechanical tests. The densities of unmodified and modified aerogels were in the range of 8.0–13.8 and 11–17.5 mg cm−3, respectively. The porosities of aerogels, before and after modification, were 99.1–99.5 and 98.8–99.3%, respectively. The porous structure formation via successful self assembling of CNF was also evidenced by the scanning electron microscopy images. All of the modified aerogels, regardless of the initial CNF concentration, had contact angle values greater than 90° and were classified as hydrophobic materials. The 0.6% sample revealed the highest adsorption capacities of 78.8 and 162.4 g g−1 for motor and cooking oils, respectively and the 1.2% aerogel exhibited the maximum values of stress and Young’s modulus in compression test. The results of this investigation indicated that ultra-light, hydrophob and superabsorbent materials based on chemically modified cellulosic aerogels with this type of silanated material were successfully produced.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from Bordeanu et al. 2010)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdullah M, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177(1):683–691

    Article  CAS  PubMed  Google Scholar 

  • Bordeanu N, Eyholzer C, Zimmermann T (2010) Surface modified cellulose nanofibrils. EP2196478 A1, Patent

  • Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410

    Article  CAS  Google Scholar 

  • Dash R, Li Y, Ragauskas AJ (2012) Cellulose nanowhisker foams by freeze casting. Carbohydr Polym 88(2):789–792

    Article  CAS  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibers, chap 3. In: Salih SM (ed) Fourier transform—materials analysis. In Tech. ISBN 978-953-51-0594-7. http://www.intechopen.com/books/fourier-transform-materials-analysis/fourier-transform-infraredspectroscopy-for-natural-fibres

  • Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453

    Article  CAS  Google Scholar 

  • Jian L, Caichao W, Yun L, Qingfeng S (2014) Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Front Agric Sci Eng 1(1):46–52

    Article  Google Scholar 

  • Jiang F, Hsieh Y-L (2014a) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2(18):6337–6342

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh Y-L (2014b) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2(2):350–359

    Article  CAS  Google Scholar 

  • Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Inter 9:25029–25037

    Article  CAS  Google Scholar 

  • Nguyen ST, Feng J, Le NT, Le AT, Hoang N, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52(51):18386–18391

    Article  CAS  Google Scholar 

  • Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surf A 445:128–134

    Article  CAS  Google Scholar 

  • Ozmen N, Çetin NS, Tingaut P, Sèbe G (2007) Transesterification reaction between acetylated wood and trialkoxysilane coupling agents. J Appl Polym Sci 115:570–575

    Article  CAS  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. J Memb Sci 320:248–258

    Article  CAS  Google Scholar 

  • Rengasamy R, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186(1):526–532

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  • Tansel B, Pascual B (2011) Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications. Chemosphere 85(7):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NAOH/PEG aqueous solution. Fiber Polym 16(2):302–307

    Article  CAS  Google Scholar 

  • Wang J, Zheng Y, Wang A (2012) Superhydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency. Chem Eng J 213:1–7

    Article  CAS  Google Scholar 

  • Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem-Ger Edit 125(10):2997–3001

    Article  Google Scholar 

  • Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460

    Article  CAS  Google Scholar 

  • Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025

    Article  CAS  Google Scholar 

  • Yu Y, Wu X, Fang J (2015) Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation. J Mater Sci 50(15):5115–5124

    Article  CAS  Google Scholar 

  • Zanini M, Lavoratti A, Lazzari LK, Galiotto D, Pagnocelli M, Baldasso C, Zattera AJ (2017) Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24(2):769–779

    Article  CAS  Google Scholar 

  • Zhai T, Zheng Q, Cai Z, **a H, Gong S (2016) Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr Polym 148:300–308

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  CAS  Google Scholar 

  • Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4(12):6409–6416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was the result of M.Sc. dissertation approved by the University of Shahreza. The authors wish to acknowledge to the Iranian National Science Foundation for the financial support Research Project # 92043921.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Rafieian or Mehdi Jonoobi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieian, F., Hosseini, M., Jonoobi, M. et al. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25, 4695–4710 (2018). https://doi.org/10.1007/s10570-018-1867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1867-3

Keywords

Navigation