Log in

Elucidation of the Effect of TiO2 in the Synthesized Nanocatalyst of Co–Mo@Al2O3–TiO2 for the Hydrogenation of C6–C8 Olefins

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of bimetallic sites on supported catalysts has enhanced catalytic performance compared to the corresponding monometallic sites. To determine the impact of TiO2 addition on the development of the active phase on CoMo/Al2O3 catalyst in the hydrogenation of Pyrolysis Gasoline (PyGas), a range of CoMo catalysts supported on different Al2O3 supports were created. The relevant operating parameters were utilized in a fixed bed reactor to assess how the TiO2 loading component affected the activity of such systems: T = 270–390 °C, P = 25 bar, WHSV = 4 h−1, H2: HC molar ratio = 10. The catalytic activity and selectivity of the catalysts were connected to their physical characteristics, which were examined using various characterization methods (N2 adsorption–desorption isotherms, FESEM, XRD, TPR, NH3-TPD, and FTIR spectroscopy). The XRD outcomes indicate that the Ti-containing supported catalysts appeared as anatase TiO2 species. TiO2 may alter the support and active metal interaction, enhancing molybdenum’s reducibility. The alteration of the electrical characteristics of tetrahedral and octahedral molybdenum species by titania seems to have been discovered to improve the surface acidity while simultaneously enhancing their reductive behavior. Moreover, the CoMo/Al2O3–TiO2 with a titania concentration of 5 wt% may effectively eliminate over 96% of Styrene molecules in PyGas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gaspar AB, dos Santos GR, de Souza Costa R, da Silva MAP (2008) Hydrogenation of synthetic PYGAS—effects of zirconia on Pd/Al2O3. Catal Today 133:400–405

    Article  Google Scholar 

  2. Esmaeili-Faraj AH et al (2021) Design of a neuro-based computing paradigm for simulation of industrial olefin plants. Chem Eng Technol 44:1382–1389

    Article  CAS  Google Scholar 

  3. Reddy KM, Pokhriyal SK, Ratnasamy P, Sivasanker S (1992) Reforming of pyrolysis gasoline over platinum-alumina catalysts containing MFI type zeolites. Appl Catal A 83:1–13

    Article  CAS  Google Scholar 

  4. Zhu J et al (2012) Synthesis of Ni–Mo and Co–Mo–Ni nano-sulfides and their stable catalysis on complicated full-ranged pyrolysis gasoline hydrorefinery. RSC Adv 2:8957–8961

    Article  CAS  Google Scholar 

  5. Cheng Y-M, Chang J-R, Wu J-C (1986) Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst. Appl Catal 24:273–285

    Article  CAS  Google Scholar 

  6. Metaxas KC, Papayannakos NG (2008) Studying the internal mass transfer phenomena inside a Ni/Al2O3 catalyst for benzene hydrogenation. Chem Eng J 140:352–357

    Article  CAS  Google Scholar 

  7. Savva PG et al (2008) Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and sol–gel techniques. Appl Catal B 79:199–207

    Article  CAS  Google Scholar 

  8. Betti CP et al (2021) Activity and sulfur resistance of co-impregnated bimetallic PdNi/γ-Al2O3 catalysts during hydrogenation of styrene. Braz J Chem Eng 38:315–326

    Article  CAS  Google Scholar 

  9. Nijhuis TA, Dautzenberg FM, Moulijn JA (2003) Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene. Chem Eng Sci 8(7):1113–1124

    Article  Google Scholar 

  10. Zhou ZM et al (2007) Kinetics of the selective hydrogenation of pyrolysis gasoline. Chem Eng Technol Ind Chem Equip Process Eng 30:105–111

    Google Scholar 

  11. Enache DI, Landon P, Lok CM, Pollington SD, Stitt EH (2005) Direct comparison of a trickle bed and a monolith for hydrogenation of pyrolysis gasoline. Ind Eng Chem Res 44:9431–9439

    Article  CAS  Google Scholar 

  12. Hoffer BW et al (2000) Stability of highly dispersed Ni/Al2O3 catalysts: effects of pretreatment. J Catal 192:432–440

    Article  CAS  Google Scholar 

  13. Hoffer BW et al (2004) Enhancing the start-up of pyrolysis gasoline hydrogenation reactors by applying tailored ex situ presulfided Ni/Al2O3 catalysts. Fuel 83:1–8

    Article  CAS  Google Scholar 

  14. Duan A et al (2007) Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization. Catal Today 119:13–18

    Article  CAS  Google Scholar 

  15. Barrera MC et al (2004) Highly active MoS2 on wide-pore ZrO2–TiO2 mixed oxides. Catal Today 98:131–139

    Article  CAS  Google Scholar 

  16. Damyanova S, Petrov L, Centeno MA, Grange P (2002) Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2-Al2O3 and ZrO2-SiO2 carriers. Appl Catal A 224:271–284

    Article  CAS  Google Scholar 

  17. Esmaeili-Faraj SH, Nasr EM (2017) Influence of SiO2 and graphene oxide nanoparticles on efficiency of biological removal process. Environ Technol 38(21):2763–2774

    Article  CAS  PubMed  Google Scholar 

  18. Mendoza-Serna R et al (2003) Preparation and characterization of porous SiO2-Al2O3-ZrO2 prepared by the sol-gel process. J Porous Mater 10:31–39

    Article  CAS  Google Scholar 

  19. Duan A et al (2009) Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel. Catal Today 140:187–191

    Article  CAS  Google Scholar 

  20. Huang W et al (2008) Ti-modified alumina supports prepared by sol–gel method used for deep HDS catalysts. Catal Today 131:314–321

    Article  CAS  Google Scholar 

  21. Ramírez J, Rayo P, Gutiérrez-Alejandre A, Ancheyta J, Rana MS (2005) Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: effect of the incorporation method of Ti. Catal Today 109:54–60

    Article  Google Scholar 

  22. Wei ZB et al (1998) Hydrodesulfurization activity of NiMo/TiO2Al2O3 catalysts. Appl Catal A 167:39–48

    Article  CAS  Google Scholar 

  23. Climent MJ, Corma A, Iborra S (2011) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133

    Article  CAS  PubMed  Google Scholar 

  24. Arena F, Cum G, Gallo R, Parmaliana A (1996) Palladium catalysts supported on oligomeric aramides in the liquid-phase hydrogenation of phenylacetylene. J Mol Catal A 110:235–242

    Article  CAS  Google Scholar 

  25. Yasunori N et al (2005) The effect of astaxanthin on retinal capillary blood flow in normal volunteers. J Clin Ther Med 21:537–542

    Google Scholar 

  26. Jiao Z-F et al (2019) Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots. Catal Sci Technol 9:2266–2272

    Article  CAS  Google Scholar 

  27. Yu L, Liu G, Wang Z, Zhou Y, Ye H (2015) A core–shell structured Si–Al@Al2O3 as novel support of Pd catalyst. Catal Commun 68:36–40

    Article  CAS  Google Scholar 

  28. Li Y et al (2013) A novel modification method for nickel foam support and synthesis of a metal-supported hierarchical monolithic Ni@Pd catalyst for benzene hydrogenation. Chem Eng J 226:166–170

    Article  CAS  Google Scholar 

  29. Liu P et al (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800

    Article  CAS  PubMed  Google Scholar 

  30. Carrara N et al (2015) Selective hydrogenation by novel composite supported Pd egg-shell catalysts. Catal Commun 61:72–77

    Article  CAS  Google Scholar 

  31. Betti C et al (2016) Kinetic study of the selective hydrogenation of styrene over a Pd egg-shell composite catalyst. React Kinet Mech Catal 117:283–306

    Article  CAS  Google Scholar 

  32. Betti CP et al (2013) Sulfur resistance of Pt-W catalysts. J Chem. https://doi.org/10.1155/2013/502014

    Article  Google Scholar 

  33. Betti C et al (2018) More active and sulfur resistant bimetallic Pd-Ni catalysts. Quim Nova 41:151–156

    CAS  Google Scholar 

  34. Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Catal Today 86:5–16

    Article  CAS  Google Scholar 

  35. Topsoe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis science and technology. Springer-Verlag, New York

    Google Scholar 

  36. Popov A et al (2010) Bio-oils hydrodeoxygenation: adsorption of phenolic molecules on oxidic catalyst supports. J Phys Chem C 114:15661–15670

    Article  CAS  Google Scholar 

  37. Centeno A, Laurent E, Delmon B (1995) Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 154:288–298

    Article  CAS  Google Scholar 

  38. Yang Y, Gilbert A, Xu CC (2009) Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. Appl Catal A 360:242–249

    Article  CAS  Google Scholar 

  39. Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101:239–245

    Article  Google Scholar 

  40. Bu Q et al (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477

    Article  CAS  PubMed  Google Scholar 

  41. Esmaeili-Faraj SH et al (2021) Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: experimental analysis and modeling by the response surface methodology. Chem Eng Process Process Intensif 164:108396

    Article  CAS  Google Scholar 

  42. Ramírez J et al (2004) The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences. Catal Today 98:19–30

    Article  Google Scholar 

  43. Chen N, Gong S, Qian EW (2015) Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Appl Catal B 174:253–263

    Article  Google Scholar 

  44. Nguyen TT, Shinozaki A, Qian EW (2017) Hydrodesulfurization, hydrodenitrogenation and hydrodearomatization over CoMo/SAPO-11-Al2O3 catalysts. J Jpn Pet Inst 60:301–310

    Article  CAS  Google Scholar 

  45. Nguyen TT, Imai K, Pu J, Qian EW (2018) Effect of TiO2 coating on morphology of active phase on sulfided CoMo/Al2O3 hydrotreating catalysts. Energy Fuels 32:1665–1673

    Article  CAS  Google Scholar 

  46. Keivanimehr F, Habibzadeh S, Mokhtarian M (2022) Enhanced product quality through hydrodesulfurization of pyrolysis gasoline over a mixed metal oxide catalyst: an experimental and DFT study. Fuel 317:123458

    Article  CAS  Google Scholar 

  47. Zhu H et al (2005) Dispersion behaviors of molybdena on titania (rutile and/or anatase). J Phys Chem B 109:11720–11726

    Article  CAS  PubMed  Google Scholar 

  48. Modabberasl A, Pirhoushyaran T, Esmaeili-Faraj SH (2022) Synthesis of CoFe2O4 magnetic nanoparticles for application in photocatalytic removal of azithromycin from wastewater. Sci Rep 12(1):19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mouret G, Mozet K, Muhr H, Plasari E, Martin M (2007) Role of the precipitation device on the properties of Al2O3-TiO2 mixed oxides. In: Proceedings of European Congress of Chemical Engineering (ECCE-6), Copenhagen, 16–20 September 2007

  50. Xu J et al (2008) Synthesis and photoluminescence of well-dispersible anatase TiO2 nanoparticles. J Colloid Interface Sci 318:29–34

    Article  CAS  PubMed  Google Scholar 

  51. Tiwari R, Rana BS, Kumar R, Sinha AK (2012) TiO2-ZrO2 binary oxides for effective hydrodesulfurization catalysts. Open Catal J 5:39–49

    Article  CAS  Google Scholar 

  52. Choudhury B, Choudhury A (2012) Luminescence characteristics of cobalt doped TiO2 nanoparticles. J Lumin 132:178–184

    Article  CAS  Google Scholar 

  53. Bhattacharyya K et al (2014) Effect of Mo-incorporation in the TiO2 lattice: a mechanistic basis for photocatalytic dye degradation. J Phys Chem C 118:15946–15962

    Article  CAS  Google Scholar 

  54. Majeed J et al (2015) Correlation of Mo dopant and photocatalytic properties of Mo incorporated TiO2: an EXAFS and photocatalytic study. RSC Adv 5:90932–90940

    Article  CAS  Google Scholar 

  55. Escobar J, Antonio De Los Reyes J, Viveros T (2003) Nickel on TiO2-modified Al2O3 sol–gel oxides: effect of synthesis parameters on the supported phase properties. Appl Catal A 253:151–163

    Article  CAS  Google Scholar 

  56. Tavizón-Pozos JA, Suárez-Toriello VA, del los Ángel P, de Reyes JA (2016) Hydrodeoxygenation of phenol over sulfided CoMo catalysts supported on a mixed Al2O3-TiO2 oxide. Int J Chem React Eng 14:1211–1223

    Article  Google Scholar 

  57. Subramanian V, Choi J, Seebauer EG, Masel RI (2007) TiO2–Al2O3 as a support for propane partial oxidation over Rh. Catal Lett 113:13–18

    Article  CAS  Google Scholar 

  58. Yuan P, Cui C, Han W, Bao X (2016) The preparation of Mo/γ-Al2O3 catalysts with controllable size and morphology via adjusting the metal-support interaction and their hydrodesulfurization performance. Appl Catal A 524:115–125

    Article  CAS  Google Scholar 

  59. Ma X et al (2015) Alumina supported molybdenum catalyst for lignin valorization: effect of reduction temperature. Bioresour Technol 192:17–22

    Article  CAS  PubMed  Google Scholar 

  60. Shah S, Marin-Flores OG, Chinnathambi K, Norton MG, Ha S (2016) Partial oxidation of surrogate Jet-A fuel over SiO2 supported MoO2. Appl Catal B 193:133–140

    Article  CAS  Google Scholar 

  61. Ji J et al (2014) Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: enhanced hydrogen production by ammonia decomposition. Int J Hydrogen Energy 39:12490–12498

    Article  CAS  Google Scholar 

  62. Yamada M, Koizumi N, Yamazaki M (1999) High pressure (≤ 5.1 MPa) DRIFT study on surface structure of Co–Mo/Al2O3 and Ni–Mo/Al2O3 using NO as probe molecule. Catal Today 50:3–8

    Article  CAS  Google Scholar 

  63. Damyanova S, Spojakina A, Jiratova K (1995) Effect of mixed titania-alumina supports on the phase composition of NiMo/TiO2Al2O3 catalysts. Appl Catal A 125:257–269

    Article  CAS  Google Scholar 

  64. Wei Z-B, **n Q, Guo XX, Grange P, Delmon B (1991) Titania-modified hydrodesulfurization catalysts. 2. Dispersion state and catalytic activity of molybdena supported on titania alumina carrier. Appl Catal A 75:179

    CAS  Google Scholar 

  65. Zhang B et al (2016) Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template. Green Chem 18:3315–3323

    Article  CAS  Google Scholar 

  66. Miyamoto T, Katada N, Kim J-H, Niwa M (1998) Acidic property of MFI-type gallosilicate determined by temperature-programmed desorption of ammonia. J Phys Chem B 102:6738–6745

    Article  CAS  Google Scholar 

  67. Toyoda T, Minami T, Qian EW (2013) Mixed alcohol synthesis over sulfided molybdenum-based catalysts. Energy Fuels 27:3769–3777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Nouri Petrochemical Company and we sincerely thank our colleagues from Research and Development Department who provided insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ardjmand.

Ethics declarations

Conflict of interest

On behalf of all authors, I (Mehdi Ardjmand, corresponding author) state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizi, M.R., Ardjmand, M. & Habibzadeh, S. Elucidation of the Effect of TiO2 in the Synthesized Nanocatalyst of Co–Mo@Al2O3–TiO2 for the Hydrogenation of C6–C8 Olefins. Catal Lett 154, 2328–2339 (2024). https://doi.org/10.1007/s10562-023-04475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04475-z

Keywords

Navigation