Log in

Development of Suitable Hydrogen Bond Donor (HBD) Catalysts for the Synthesis of Cyclic Carbonates and Dithiocarbonates from Epoxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Novel ketimine derivatives have been designed, synthesized and employed as a Hydrogen Bond Donor (HBD) catalyst for the successful incorporation of CO2 in epoxides en route to the synthesis of cyclic carbonates. The catalytic activity was observed to be directly correlated with the structural features of such ketimine derivatives, where the accountability of the protocol governs by the extent of non-covalent interactions. As such, the accessibility of the “H(s)” present in the catalyst is the primary criteria for the formation of feasible H-bond(s) to activate the substrate. These characteristic properties have been observed for the catalytic activities of the different ketimine derivatives. We have found that the positions of the H’s plays a crucial role for the formation of single or dual H-bonds with the substrate epoxides, which actually dictates the catalytic efficiency. In our domino ring opening followed by cyclization protocol, the HBD catalyst has been used along with a co-catalyst, tetrabutyl ammonium iodide (TBAI). The iodide ion acts as a nucleophile to open the epoxide ring, followed by the cyclization reaction takes place with CO2. The role of the HBD catalyst is found to activate the ring opening step as well as to stabilize the oxyanion intermediate, which forms after the O–C bond formation with CO2. The methodology has been optimized in a sustainable solvent free condition and generalized to obtain a variety of cyclic carbonates in good to excellent yields. Similarly, this strategy has been further extended for the synthesis of cyclic dithiocarbonate by the reaction of epoxide with carbon-di-sulphide (CS2) as an electrophile under the same catalytic condition. In this case the corresponding products were obtained as a mixture of regioisomer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Scheme 5

Similar content being viewed by others

References

  1. Aresta M (2006) Activation of small molecules. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Germany

    Google Scholar 

  2. IPCC (2013) Climate Change 2013: The Physical Science Basis

  3. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A (2018) Chem Rev 118:434–504

    Article  CAS  PubMed  Google Scholar 

  4. Sable DA, Vadagaonkar KS, Kapdi AR, Bhanage BM (2021) Org Biomol Chem 19:5725–5757

    Article  CAS  PubMed  Google Scholar 

  5. Onishi N, Himeda Y (2022) Chem Catal 2:242–252

    Article  CAS  Google Scholar 

  6. Rossini FD, Jessup RS (1938) J Res Natl Bur Stand 21:491–513

    Article  CAS  Google Scholar 

  7. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Aresta M, Dibenedetto A (2007) Dalt Trans 28:2975–2992

    Article  Google Scholar 

  9. Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C (2019) Chem Soc Rev 48:4466–4514

    Article  CAS  PubMed  Google Scholar 

  10. Liao X, **ang X, Wang Z, Ma R, Kong L, Gao X, He J, Hou W, Peng C, Lin J (2022) Sustain Energy Fuels 6:2846–2857

    Article  CAS  Google Scholar 

  11. Wang Y, Qian Q, Zhang J, Bediako BBA, Wang Z, Liu H, Han B (2019) Nat Commun 10:1–7

    Article  Google Scholar 

  12. Wang ZQ, Chen JH, Qiu X, Ma JG, Cheng P (2021) ACS Appl Mater Interfaces 13:7389–7395

    Article  CAS  PubMed  Google Scholar 

  13. **ao DJ, Chant ED, Frankhouser AD, Chen Y, Yau A, Washton NM, Kanan MW (2019) Nat Chem 11:940–947

    Article  CAS  PubMed  Google Scholar 

  14. Koizumi H, Takeuchi K, Matsumoto K, Fukaya N, Sato K, Uchida M, Matsumoto S, Hamura S, Choi JC (2022) ACS Sustain Chem Eng 10:5507–5516

    Article  CAS  Google Scholar 

  15. Behr A, Henze G (2011) Green Chem 13:25–39

    Article  CAS  Google Scholar 

  16. Claver C, Yeamin MB, Reguero M, Masdeu-Bultó AM (2020) Green Chem 22:7665–7706

    Article  CAS  Google Scholar 

  17. Nishioka K, Goto H, Sugimoto H (2012) Macromolecules 45:8172–8192

    Article  CAS  Google Scholar 

  18. Motokucho S, Morikawa H (2020) Chem Commun 56:10678–10681

    Article  CAS  Google Scholar 

  19. Zhou H, Mu S, Ren B, Zhang R, Lu X (2019) Green Chem 21:991–994

    Article  CAS  Google Scholar 

  20. Rostami A, Ebrahimi A, Sakhaee N, Golmohammadi F, Al-Harrasi A (2022) J Org Chem 87:40–55

    Article  CAS  PubMed  Google Scholar 

  21. Mena S, Sanchez J, Guirado G (2019) RSC Adv 9:15115–15123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mena S, Santiago S, Gallardo L, Guirado G (2020) Chemosphere 245:125557–125566

    Article  CAS  PubMed  Google Scholar 

  23. Schlosser M, Geneste H (1998) Chem Eur J 4:1969–1973

    Article  CAS  Google Scholar 

  24. Guo W, Laserna V, Rintjema J, Kleij AW (2016) Adv Synth Catal 358:1602–1607

    Article  CAS  Google Scholar 

  25. Saptal V, Shinde DB, Banerjee R, Bhanage BM (2016) Catal Sci Technol 6:6152–6158

    Article  CAS  Google Scholar 

  26. Anthofer MH, Wilhelm ME, Cokoja M, Markovits IIE, Pöthig A, Mink J, Herrmann WA, Kühn FE (2014) Catal Sci Technol 4:1749–1758

    Article  CAS  Google Scholar 

  27. Yang Z, Sun J, Cheng W, Wang J, Li Q, Zhang S (2014) Catal Commun 44:6–9

    Article  CAS  Google Scholar 

  28. Clegg W, Harrington RW, North M, Pasquale R (2010) Chem Eur J 16:6828–6843

    Article  CAS  PubMed  Google Scholar 

  29. Werner T, Büttner H (2014) Chemsuschem 7:3268–3271

    Article  CAS  PubMed  Google Scholar 

  30. Guo L, Lamb KJ, North M (2021) Green Chem 23:77–118

    Article  CAS  Google Scholar 

  31. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581

    Article  PubMed  Google Scholar 

  32. Lawrenson SB, Arav R, North M (2017) Green Chem 19:1685–1691

    Article  CAS  Google Scholar 

  33. Han JG, Hwang E, Kim Y, Park S, Kim K, Roh DH, Gu M, Lee SH, Kwon TH, Kim Y, Choi NS, Kim BS (2020) ACS Appl Mater Interfaces 12:24479–24487

    Article  CAS  PubMed  Google Scholar 

  34. Kamphuis AJ, Picchioni F, Pescarmona PP (2019) Green Chem 21:406–448

    Article  CAS  Google Scholar 

  35. Guo W, Martínez-Rodríguez L, Kuniyil R, Martin E, Escudero-Adán EC, Maseras F, Kleij AW (2016) J Am Chem Soc 138:11970–11978

    Article  CAS  PubMed  Google Scholar 

  36. Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Angew Chem Int Ed 51:13041–13045

    Article  CAS  Google Scholar 

  37. Brown GD (1994) Phytochemistry 35:425–433

    Article  CAS  Google Scholar 

  38. Zhang C, Yang S, Liao S, Fan C, Wu Y, Yue JM (2007) Org lett 9:3383–3386

    Article  CAS  PubMed  Google Scholar 

  39. Todd JS, Gerwick WH (1995) J Nat Prod 58:586–589

    Article  CAS  PubMed  Google Scholar 

  40. Guselnikova O, Postnikov P, Kosina J, Kolska Z, Trelin A, Svorcik V, Lyutakov O (2021) J Mater Chem A 9:8462–8469

    Article  CAS  Google Scholar 

  41. Shao H, Reddi Y, Cramer CJ (2020) ACS Catal 10:8870–8879

    Article  CAS  Google Scholar 

  42. Polidoro D, Perosa A, Rodríguez-Castellón E, Canton P, Castoldi L, Rodríguez-Padrón D, Selva M (2022) ACS Sustain Chem Eng 10:13835–13848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rokicki G, Pawlicki J, Kuran W (1982) Polym J 14:839–845

    Article  CAS  Google Scholar 

  44. Rokicki G (2000) Prog Polym Sci 25:259–342

    Article  CAS  Google Scholar 

  45. Shaikh AAG, Sivaram S (1996) Chem Rev 96:951–976

    Article  CAS  PubMed  Google Scholar 

  46. Maquilón C, Limburg B, Laserna V, Garay-ruiz D, Fabra JG, Bo C, Belmonte M, Adán EC, Kleij AW (2020) Organometallics 39:1642–1651

    Article  Google Scholar 

  47. Yoshida SK, Kikuchi S, Yamada T (2010) J Am Chem Soc 132:4072–4073

    Article  CAS  PubMed  Google Scholar 

  48. Kuznetsova SA, Rulev YA, Larionov VA, Smolyakov AF, Zubavichus YV, Maleev VI, Li H, North M, Saghyan AS, Belokon YN (2019) ChemCatChem 11:511–519

    Article  CAS  Google Scholar 

  49. Andrea KA, Kerton FM (2021) Polym J 53:29–46

    Article  Google Scholar 

  50. Borah R, Deori N, Brahma S (2020) New J Chem 44:2547–2554

    Article  CAS  Google Scholar 

  51. Álvarez-Miguel L, Burgoa JD, Mosquera MEG, Hamilton A, Whiteoak CJ (2021) ChemCatChem 13:4099–4110

    Article  Google Scholar 

  52. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Org Lett 12:5728–5731

    Article  CAS  PubMed  Google Scholar 

  53. Sopeña S, Martin E, Escudero-Adán EC, Kleij AW (2017) ACS Catal 7:3532–3539

    Article  Google Scholar 

  54. Toda Y, Komiyama Y, Esaki H, Fukushima K, Suga H (2019) J Org Chem 84:15578–15589

    Article  CAS  PubMed  Google Scholar 

  55. Li ZQ, Zhang YY, Zheng YJ, Li B, Wu GP (2022) J Org Chem 87:3145–3155

    Article  CAS  PubMed  Google Scholar 

  56. **n Z, Lescot C, Friis SD, Daasbjerg K, Skrydstrup T (2015) Angew Chem Int Ed 54:6862–6866

    Article  CAS  Google Scholar 

  57. Zhang S, He LN (2014) Aust J Chem 67:980–988

    Article  CAS  Google Scholar 

  58. Fanjul-Mosteirín N, Jehanno C, Ruipérez F, Sardon H, Dove AP (2019) ACS Sustain Chem Eng 7:10633–10640

    Article  Google Scholar 

  59. Liu B, Liu M, Liang L, Sun J (2015) Catalysts 5:119–130

    Article  Google Scholar 

  60. Villiers C, Dognon JP, Pollet R, Thuéry P, Ephritikhine M (2010) Angew Chem Int Ed 122:3543–3546

    Article  Google Scholar 

  61. Zhao BL, Li JH, Du DM (2017) Chem Rec 17:994–1018

    Article  CAS  PubMed  Google Scholar 

  62. Chennapuram M, Reddy UVS, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H (2017) Eur J Org Chem 2017:4633–4641

    Article  CAS  Google Scholar 

  63. da Silva LP (2017) J Phys Chem C 121:16300–16307

    Article  Google Scholar 

  64. Andrea KA, Kerton FM (2019) ACS Catal 9:1799–1809

    Article  CAS  Google Scholar 

  65. Hu YL, Zhang RL, Fang D (2019) Environ Chem Lett 17:501–508

    Article  CAS  Google Scholar 

  66. Peng J, Wang S, Yang HJ, Ban B, Wei Z, Wang L, Lei B (2018) Fuel 224:481–488

    Article  CAS  Google Scholar 

  67. Maeda C, Sasaki S, Takaishi K, Ema T (2018) Catal Sci Technol 8:4193–4198

    Article  CAS  Google Scholar 

  68. Wang Y, Duan J (2022) ACS Appl Polym Mater 4:5851–5860

    Article  Google Scholar 

  69. Fanjul-Mosteirín N, Martín J, Valdés C, Concellón C, del Amo V (2020) Org Lett 22:6988–6992

    Article  PubMed  Google Scholar 

  70. Wilhelm ME, Anthofer MH, Cokoja M, Markovits IIE, Herrmann WA, Kühn FE (2014) Chemsuschem 7:1357–1360

    Article  CAS  PubMed  Google Scholar 

  71. Dong T, Zheng YJ, Yang GW, Zhang YY, Li B, Wu GP (2020) Chemsuschem 13:4121–4127

    Article  CAS  PubMed  Google Scholar 

  72. Song J, Zhang Z, Han B, Hu S, Li W, **e Y (2008) Green Chem 10:1337–1341

    Article  CAS  Google Scholar 

  73. Xu J, **an A, Li Z, Liu J, Zhang Z, Yan R, Gao L, Liu B, Zhao L, Guo K (2021) J Org Chem 86:3422–3432

    Article  CAS  PubMed  Google Scholar 

  74. Foltran S, Mereau R, Tassaing T (2014) Catal Sci Technol 4:1585–1597

    Article  CAS  Google Scholar 

  75. Whiteoak CJ, Nova A, Maseras F, Kleij AW (2012) Chemsuschem 5:2032–2038

    Article  CAS  PubMed  Google Scholar 

  76. Hardman-Baldwin AM, Mattson AE (2014) Chemsuschem 7:3275–3278

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Zhang Y (2016) ACS Catal 6:4871–4876

    Article  CAS  Google Scholar 

  78. Hong M, Kim Y, Kim H, Cho HC, Baik MH, Kim Y (2018) J Org Chem 83:9370–9380

    Article  CAS  PubMed  Google Scholar 

  79. Takaishi K, Okuyama T, Kadosaki S, Uchiyama M, Ema T (2019) Org Lett 21:1397–1401

    Article  CAS  PubMed  Google Scholar 

  80. Wu X, Chen C, Guo Z, North M, Whitwood AC (2019) ACS Catal 9:1895–1906

    Article  CAS  Google Scholar 

  81. Huang JW, Shi M (2003) J Org Chem 68:6705–6709

    Article  CAS  PubMed  Google Scholar 

  82. Pickard PL, Tolbert TL (1950) J Org Chem 26:876–878

    Google Scholar 

  83. Arjmand F, Sayeed F, Parveen S, Tabassum S, Juvekar AS, Zingde SM (2013) Dalton Trans 42:3390–3401

    Article  CAS  PubMed  Google Scholar 

  84. Cardillo G, Fabbroni S, Gentilucci L, Gianotti M, Tolomeklli A (2003) Synth Commun 33:1587–1594

    Article  CAS  Google Scholar 

  85. Perrin DD, Armarego WLF (1988) Purification of Laboratory Chemicals. Third Edition, Oxford

    Google Scholar 

  86. Kozuch S, Martin JML (2012) ACS Catal 2:2787–2794

    Article  CAS  Google Scholar 

  87. Tian D, Liu B, Gan Q, Li H, Darensbourg DJ (2012) ACS Catal 2:2029–2035

    Article  CAS  Google Scholar 

  88. Diebler J, Spannenberg A, Werner T (2016) Org Biomol Chem 14:7480–7489

    Article  CAS  PubMed  Google Scholar 

  89. Krishnamurthy S, Yoshidaab Y, Endo T (2022) Polym Chem 13:267–274

    Article  CAS  Google Scholar 

  90. An S, Nam J, Kanimozhi C, Song Y, Kim S, Shin N, Gopalan P, Kim M (2022) ACS Appl Mater Interfaces 14:3274–3283

    Article  CAS  PubMed  Google Scholar 

  91. Sengoden M, Bhat GA, Darensbourg DJ (2022) Green Chem 24:2535–2541

    Article  CAS  Google Scholar 

  92. Clegg W, Harrington RW, North M, Villuendas P (2010) J Org Chem 75:6201–6207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Science and Engineering Research Board (SERB) (ECR/2017/000966) Govt. of India, is highly acknowledged for funding and Visvesvaraya National Institute of Technology (VNIT) Nagpur for providing the infrastructure. SR and KD are extremely thankful to SERB, DST and VNIT Nagpur for their research fellowships.

Funding

Science and Engineering Research Board, ECR/2017/000966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Halder.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2696 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, K. & Halder, S. Development of Suitable Hydrogen Bond Donor (HBD) Catalysts for the Synthesis of Cyclic Carbonates and Dithiocarbonates from Epoxide. Catal Lett 154, 2243–2254 (2024). https://doi.org/10.1007/s10562-023-04422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04422-y

Keywords

Navigation