Log in

The Recycle of Red Mud as NH3-SCR Catalyst by Acid Pretreatment: Insight into the Interaction Between Iron and Titanium Species

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The red mud was activated by an acid leaching and reprecipitation approach to be used as NH3-SCR catalyst. The effect of acid concentration on the leaching rates of Fe, Ti, Al, Ca and Na was investigated, specifically, the interaction between Fe and Ti components in the obtained red mud-based catalysts was concerned. With the acid concentration increasing (below 3.1 mol/L), more Fe and Ti are leached out, meanwhile, Ti can be incorporated into Fe2O3 phase and the crystallite size of Fe2O3 becomes smaller, and the obtained catalyst exhibits better low-temperature activity and SO2 resistance. The HRM3.1 catalyst obtained at the acid concentration of 3.1 mol/L possesses strongest reducibility, largest amount of surface chemisorbed oxygen and medium surface acidity. The in-situ DRIFTS results show that more NO can be adsorbed and oxidized over the HRM3.1 catalyst to generate more nitrate species, even though in the presence of SO2, alleviating the suppression of SO2 on the NH3-SCR reaction, and thus the SO2 tolerance is enhanced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xu JQ, Chen GR, Guo F, **e JQ (2018) Chem Eng J 353:507–518. https://doi.org/10.1016/j.cej.2018.05.047

    Article  CAS  Google Scholar 

  2. Cai M, Bian X, **e F, Wu WY, Cen P (2021) ChemistrySelect 6:12331–12341. https://doi.org/10.1002/slct.202101358

    Article  CAS  Google Scholar 

  3. Shi ZW, Peng QG, E JQ, **e B, Wei J, Yin RX, Fu G (2023) Fuel 331: 125885. https://doi.org/10.1016/j.fuel.2022.125885.

  4. Han L, Cai S, Gao M, Hasegawa J, Wang P, Zhang J, Shi L, Zhang D (2019) Chem Rev 119:10916–10976. https://doi.org/10.1021/acs.chemrev.9b00202

    Article  CAS  PubMed  Google Scholar 

  5. Liu XY, Wang PL, Shen YJ, Bi SY, Ren W, Zhang DS (2022) ACS Catal 12:11306–11317. https://doi.org/10.1021/acscatal.2c02699

    Article  CAS  Google Scholar 

  6. Hu WW, He JB, Liu XY, Yu HJ, Jia XY, Yan TT, Han LP, Zhang DS (2022) Environ Sci Technol 56:5170–5178. https://doi.org/10.1021/acs.est.1c08715

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Liu XY, Wang PL, Shen YJ, Zheng LR, Han LP, Deng J, Zhang JP, Wang AY, Ren W, Gao F, Zhang DS (2022) Environ Sci Technol 56:11646–11656. https://doi.org/10.1021/acs.est.2c01812

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Qi XR, Han LP, Deng J, Lan TW, Wang FL, Shi LY, Zhang DS (2022) Environ Sci Technol 56:5840–5848. https://doi.org/10.1021/acs.est.2c00944

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wu JH, ** SL, Wei XD, Gu FJ, Han Q, Lan YX, Qian CL, Li JQ, Wang XR, Zhang R, Qiao WM, Ling LC, ** ML (2021) Chem Eng J 412: 128712. https://doi.org/10.1016/j.cej.2021.128712.

  10. Chen JW, Wang Y, Liu ZM (2023) J Environ Sci 127:628–640. https://doi.org/10.1016/j.jes.2022.06.027

    Article  CAS  Google Scholar 

  11. Mi HC, Yi LS, Wu Q, **a J, Zhang BH (2022) Waste Manage Res 40:1594–1607. https://doi.org/10.1177/0734242X221107987

    Article  Google Scholar 

  12. Das B, Mohanty K (2019) Renew Energy 143:1791–1811. https://doi.org/10.1016/j.renene.2019.05.114

    Article  CAS  Google Scholar 

  13. Wang MF, Liu XM (2021) J Hazard Mater 408:124420. https://doi.org/10.1016/j.jhazmat.2020.124420

    Article  CAS  PubMed  Google Scholar 

  14. Wang SH, ** HX, Deng Y, **ao YD (2021) J Cleaner Prod 289:125136. https://doi.org/10.1016/j.jclepro.2020.125136

    Article  CAS  Google Scholar 

  15. Khairul M, Zanganeh J, Moghtaderi B (2019) Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  16. Li CM, Zeng H, Liu PL, Yu J, Yan BH, Shi QL, Lu CM, Crittenden J (2020) J Hazard Mater 394:122536. https://doi.org/10.1016/j.jhazmat.2020.122536

    Article  CAS  Google Scholar 

  17. Gao C, Yang GP, Wang D, Gong ZQ, Zhang X, Wang B, Peng Y, Li JH, Lu CM, Crittenden J (2020) Chemosphere 257:127215. https://doi.org/10.1016/j.chemosphere.2020.127215

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Xuan Y, Wang B, Gao C, Niu SL, Zhao GJ, Wang D, Li JH, Lu CM, Crittenden JC (2022) Front Environ Sci Eng 16(7):88

    Article  CAS  Google Scholar 

  19. Lin HF, Abubakar A, Li CM, Li YJ, Wang C, Yu J, Gao SQ (2019) Roy Soc Open Sci 6:191183. https://doi.org/10.1098/rsos.191183

    Article  ADS  Google Scholar 

  20. Lin HF, Abubakar A, Li CM, Li YJ, Wang C, Gao SQ, Liu ZE, Yu J (2020) Catal Lett 150:702–712. https://doi.org/10.1007/s10562-019-02953-x

    Article  CAS  Google Scholar 

  21. Gong ZQ, Ma J, Wang D, Niu SL (2022). Front Environ Sci Eng. https://doi.org/10.1007/s11783-021-1447-x

    Article  Google Scholar 

  22. Wang B, Ma J, Wang D, Gong ZQ, Shi QL, Gao C, Lu CM, Crittenden J (2021) Catal Today 376:247–254. https://doi.org/10.1016/j.cattod.2020.05.036

    Article  CAS  Google Scholar 

  23. Chen QZ, Zhang X, Li B, Niu SL, Zhao GJ, Wang D, Peng Y, Li JH, Lu CM, Crittenden J (2021) Front Environ Sci Eng 15(5):92. https://doi.org/10.1007/s11783-020-1337-7

    Article  CAS  Google Scholar 

  24. Qi L, Sun ZG, Tang Q, Wang J, Huang TZ, Sun CZ, Gao F, Tang CJ, Dong L (2020) J Hazard Mater 396:122459. https://doi.org/10.1016/j.jhazmat.2020.122459

    Article  CAS  PubMed  Google Scholar 

  25. Zhang SQ, Zhang C, Wang Q, Ahn WS (2019) Ind Eng Chem Res 58:22857–22865. https://doi.org/10.1021/acs.iecr.9b04383

    Article  CAS  Google Scholar 

  26. Liu FD, He H, Zhang C (2008) Chem Commun 2043–2045. https://doi.org/10.1039/B800143J.

  27. Liu FD, He H, Ding Y, Zhang CB (2009) Appl Catal B 93:194–204. https://doi.org/10.1016/j.apcatb.2009.09.029

    Article  CAS  Google Scholar 

  28. Liu FD, He H (2010) J Phys Chem C 114:16929–16936. https://doi.org/10.1021/jp912163k

    Article  ADS  CAS  Google Scholar 

  29. Liu FD, He H, Zhang CB, Feng ZC, Zheng LR, **e YN, Hu TD (2010) Appl Catal B 96:408–420. https://doi.org/10.1016/j.apcatb.2010.02.038

    Article  CAS  Google Scholar 

  30. Liu FD, He H, Zhang CB, Shan WP, Shi XY (2011) Catal Today 175:18–25. https://doi.org/10.1016/j.cattod.2011.02.049

    Article  CAS  Google Scholar 

  31. Qu WY, Chen YX, Huang ZW, Gao JY, Zhou MJ, Chen JX, Li C, Ma Z, Chen JM, Tang XF (2017) Environ Sci Technol Lett 4:246–250. https://doi.org/10.1021/acs.estlett.7b00124

    Article  CAS  Google Scholar 

  32. Chen JX, Qu WY, Chen YX, Liu XN, Jiang XM, Wang H, Zong YH, Ma Z, Tang XF (2018) Chem Cat Chem 10:4683–4688. https://doi.org/10.1002/cctc.201801169

    Article  CAS  Google Scholar 

  33. Khaleel A, Parvin M, AlTabaji M, Al-zamly A (2018) J Solid State Chem 175:91–97. https://doi.org/10.1016/j.jssc.2018.01.008

    Article  ADS  CAS  Google Scholar 

  34. Liu FD, He H, Lian ZH, Shan WP, **e LJ, Asakura K, Yang WW, Deng H (2013) J Catal 175:340–351. https://doi.org/10.1016/j.jcat.2013.08.003

    Article  CAS  Google Scholar 

  35. Han L, Gao M, Hasegawa J, Li S, Shen Y, Li H, Shi L, Zhang D (2019) Catalysts Environ Sci Technol 53:6462–6473. https://doi.org/10.1021/acs.est.9b00435

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wang H, Yang MH, ** SL, Zhang R, Li WF, Wang Y, Huo WY, Wang XR, Qiao WM, Ling LC, ** ML (2021) ChemistrySelect 6:3642–3655. https://doi.org/10.1002/slct.202100242

    Article  CAS  Google Scholar 

  37. Li WF, ** SL, Zhang R, Wei YB, Wang JC, Yang S, Wang H, Yang MH, Liu Y, Qiao WM, Ling LC, ** ML (2020) RSC Adv 10:12908–12919. https://doi.org/10.1039/d0ra01654c

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang MH, Wang H, ** SL, Zhang R, Wang Y, Huo WY, Wang XR, ** ML, Qiao WM, Ling LC (2021) Catal Sci Technol 11:2057–2072. https://doi.org/10.1039/D0CY02006K

    Article  CAS  Google Scholar 

  39. Han Q, ** SL, Wang JT, Wang JC, Sun PF, Zhou Y, Wang XR, Zhang R, Qiao WM, Ling LC, ** MJ (2022) J Phys Chem Solids 167:110782. https://doi.org/10.1016/j.jpcs.2022.110782

    Article  CAS  Google Scholar 

  40. Wei YB, ** SL, Zhang R, Li WF, Wang JC, Yang S, Wang H, Yang MH, Liu Y, Qiao WM, Ling LC, ** ML (2020) Materials 13:475. https://doi.org/10.3390/ma13020475

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  42. Li J, Lu GZ, Wu GS, Mao DS, Wang YQ, Guo Y (2012) Catal Sci Technol 2:1865–1871. https://doi.org/10.1039/C2CY20118F

    Article  CAS  Google Scholar 

  43. Jampaiah D, Velisoju VK, Devaiah D, Singh M, Mayes ELH, Coyle VE, Reddy BM, Bansal V, Bhargava SK (2019) Appl Surf Sci 473:209–221. https://doi.org/10.1016/j.apsusc.2018.12.048

    Article  ADS  CAS  Google Scholar 

  44. Song BY, Li C, Zhang XF, Gao R, Cheng XL, Deng ZP, Xu YM, Huo LH, Gao S (2022) J Mater Chem A 10:14411–14422

    Article  CAS  Google Scholar 

  45. Li L, Wu Y, Hou X, Chu B, Nan B, Qin Q, Fan M, Sun C, Li B, Dong L, Dong L (2019) Ind Eng Chem Res 58:849–862. https://doi.org/10.1021/acs.iecr.8b05066

    Article  CAS  Google Scholar 

  46. Tang C, Wang H, Dong S, Zhuang J, Qu Z (2018) Catal Today 307:2–11. https://doi.org/10.1016/j.cattod.2017.06.005

    Article  CAS  Google Scholar 

  47. Zhao L, Li X, Quan X, Chen G (2011) Environ Sci Technol 45:5373–5379. https://doi.org/10.1021/es200784e

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Wu Q, Gao H, He H (2006) J Phys Chem B 110:8320–8324. https://doi.org/10.1021/jp060105+

    Article  CAS  PubMed  Google Scholar 

  49. Xu W, He H, Yu Y (2009) J Phys Chem C 113:4426–4432. https://doi.org/10.1021/jp8088148

    Article  CAS  Google Scholar 

  50. Gao S, Wang P, Yu F, Wang H, Wu Z (2016) Catal Sci Technol 6:8148–8156. https://doi.org/10.1039/C6CY01502F

    Article  CAS  Google Scholar 

  51. ** RB, Liu Y, Wang Y, Cen WL, Wu ZB, Wang HQ, Weng XL (2014) Appl Catal B 148–149:582–588. https://doi.org/10.1016/j.apcatb.2013.09.016

    Article  CAS  Google Scholar 

  52. Waqif M, Bazin P, Saur O, Lavalley JC, Blanchard G, Touret O (1997) Appl Catal B 11:193–205. https://doi.org/10.1016/S0926-3373(96)00040-9

    Article  CAS  Google Scholar 

  53. Wei L, Cui SP, Guo HX, Ma XY, Zhang LJ (2016) J Mole Catal A 421:102–108. https://doi.org/10.1016/j.molcata.2016.05.013

    Article  CAS  Google Scholar 

  54. Hadjiivanov K, Avreyska V, Klissurski D, Marinovai T (2002) Langmuir 18:1619–1625. https://doi.org/10.1021/la0110895

    Article  CAS  Google Scholar 

  55. Wei L, Cui SP, Guo H, Ma X, Zhang L (2016) J Mol Catal A 421:102–108. https://doi.org/10.1016/j.molcata.2016.05.013

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by the Young and Middle-aged Science and Technology Talent Development Fund of Shanghai Institute of Technology (No. ZQ2023-9) and National Natural Science Foundation of China (No. U1710252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangling ** or Minglin **.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, Y., **, S. et al. The Recycle of Red Mud as NH3-SCR Catalyst by Acid Pretreatment: Insight into the Interaction Between Iron and Titanium Species. Catal Lett 154, 1738–1754 (2024). https://doi.org/10.1007/s10562-023-04402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04402-2

Keywords

Navigation