Log in

Introduction of a Recyclable Basic Ionic Solvent with Bis-(NHC) Ligand Property and The Possibility of Immobilization on Magnetite for Ligand- and Base-Free Pd-Catalyzed Heck, Suzuki and Sonogashira Cross-Coupling Reactions in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new versatile and recyclable NHC ligand precursor has been developed with ligand, base, and solvent functionalities for the efficient Pd-catalyzed Heck, Suzuki and Sonogashira cross-coupling reactions under mild conditions. Furthermore, NHC ligand precursor was immobilized on magnetite and its catalytic activity was also evaluated towards the coupling reactions as a heterogeneous catalyst. The NHC ligand precursor was prepared with imidazolium functionalization of TCT followed by a simple ion exchange by hydroxide ions. However, the results revealed an excellent catalytic activity for the both homogeneous and heterogeneous catalytic systems. 1.52 g.cm−3 and 1194 cP was obtained for the density and viscosity of the NHC ligand precursor respectively. On the other hand, the heterogeneous type could be readily recovered from the reaction mixture and reused for several times while preserving its properties. Heterogeneous nature of the magnetic catalyst was studied by hot filtration, mercury poisoning, and three-phase tests. High to excellent yields were obtained for all entries for the both homogeneous and heterogeneous catalysts, which reflects the high consistency of the catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Scheme 5
Fig. 5
Fig. 6
Scheme 6

Similar content being viewed by others

References

  1. Cheng S, Wei W, Zhang X, Yu H, Huang M, Kazemnejadi M (2020) Green Chem 22:2069–2076

    Article  CAS  Google Scholar 

  2. Biajoli AF, Schwalm CS, Limberger J, Claudino TS, Monteiro AL (2014) J Braz Chem Soc 25:2186–2214

    CAS  Google Scholar 

  3. Yousaf M, Zahoor AF, Akhtar R, Ahmad M, Naheed S (2019) Mol Diversity 24:821–839

    Article  Google Scholar 

  4. Asadi S, Sedghi R, Heravi MM (2017) Catal Lett 147:2045–2056

    Article  CAS  Google Scholar 

  5. Dalby A, Mo X, Stoa R, Wroblewski N, Zhang Z, Hagen TJ (2013) Tetrahedron Lett 54:2737–2739

    Article  CAS  Google Scholar 

  6. Thiel OR, Achmatowicz M, Milburn RM (2012) Synlett 23:1564–1574

    Article  CAS  Google Scholar 

  7. Liu C, Liu G, Zhao H (2016) Chin J Chem 34:1048–1052

    Article  Google Scholar 

  8. Sardarian AR, Kazemnejadi M, Esmaeilpour M (2019) Dalton Trans 48:3132–3145

    Article  CAS  Google Scholar 

  9. Tsoukala A, Bjørsvik H-R (2011) Org Process Res Dev 15:673–680

    Article  CAS  Google Scholar 

  10. Fu Y, Hong S, Li D, Liu S (2013) J Agric Food Chem 61:5347–5352

    Article  CAS  Google Scholar 

  11. Nishimura K, Kinugawa M (2012) Org Process Res Dev 16:225–231

    Article  CAS  Google Scholar 

  12. Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P (2013) J Med Chem 56:1247–1261

    Article  CAS  Google Scholar 

  13. Chekal BP, Guinness SM, Lillie BM, McLaughlin RW, Palmer CW, Post RJ, Sieser JE, Singer RA, Sluggett GW, Vaidyanathan R, Withbroe GJ (2014) Org Process Res Dev 18:266–274

    Article  CAS  Google Scholar 

  14. Nasseri MA, Alavi SA, Kazemnejadi M, Allahresani A (2019) RSC Adv 9:20749–20759

    Article  CAS  Google Scholar 

  15. Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A (2019) J Iran Chem Soc 16:2693–2705

    Article  CAS  Google Scholar 

  16. Sperry JB, Farr RM, Levent M, Ghosh M, Hoagland SM, Varsolona RJ, Sutherland K (2012) Org Process Res Dev 16:1854–1860

    Article  CAS  Google Scholar 

  17. Loubidi M, Moutardier A, Campos JF, Berteina-Raboin S (2018) Tetrahedron Lett 59:1050–1054

    Article  CAS  Google Scholar 

  18. Zhang ZM, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J (2019) Angew Chem 131:14795–14801

    Article  Google Scholar 

  19. Yim JCH, Nambo M, Crudden CM (2017) Org Lett 19:3715–3718

    Article  CAS  Google Scholar 

  20. Laffoon SD, Chan VS, Fickes MG, Kotecki B, Ickes AR, Henle J, Napolitano JG, Franczyk TS, Dunn TB, Barnes DM, Haight AR (2019) ACS Catal 9:11691–11708

    Article  CAS  Google Scholar 

  21. Naeimi H, Kiani F (2018) J Coord Chem 71:1157–1167

    Article  CAS  Google Scholar 

  22. Sadjadi S, Lazzara G, Malmir M, Heravi MM (2018) J Catal 366:245–257

    Article  CAS  Google Scholar 

  23. Chen MT, Hsieh BY, Liu YH, Wu KH, Lussari N, Braga AA (2020). Appl Organomet Chem. https://doi.org/10.1002/aoc.5870

    Article  Google Scholar 

  24. Ghotbinejad M, Khosropour AR, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V (2014) J Mol Catal A: Chem 385:78–84

    Article  CAS  Google Scholar 

  25. Wang T, Xu K, Wang W, Liu L (2018) Transition Met Chem 43:347–353

    Article  CAS  Google Scholar 

  26. Aktaş A, Celepci DB, Gök Y (2019) J Chem Sci 131:78

    Article  Google Scholar 

  27. Andrade GA, DiMeglio JL, Guardino ET, Yap GP, Rosenthal J (2017) Polyhedron 135:134–143

    Article  CAS  Google Scholar 

  28. Wang X, Li S, Yu H, Yu J, Liu S (2011). Chem–Eur J. https://doi.org/10.1002/chem.201101032

    Article  PubMed  Google Scholar 

  29. Kazemnejadi M, Alavi SA, Rezazadeh Z, Nasseri MA, Allahresani A, Esmaeilpour M (2019) Green Chem 21:1718–1734

    Article  CAS  Google Scholar 

  30. Nasseri MA, Alavi SA, Kazemnejadi M, Allahresani A (2019) ChemistrySelect 4:8493–8499

    Article  CAS  Google Scholar 

  31. Long Y, Liang K, Niu J, Tong X, Yuan B, Ma J (2015) New J Chem 39:2988–2996

    Article  CAS  Google Scholar 

  32. Veisi H, Najafi S, Hemmati S (2018) Int J Biol Macromol 113:186–194

    Article  CAS  Google Scholar 

  33. Kazemnejadi M, Alavi SA, Rezazadeh Z, Nasseri MA, Allahresani A, Esmaeilpour M (2019) J Mol Struct 1186:230–249

    Article  CAS  Google Scholar 

  34. Yang Q, Sane N, Klosowski D, Lee M, Rosenthal T, Wang NX, Wiensch E (2019) Org Process Res Dev 23:2148–2156

    Article  CAS  Google Scholar 

  35. Brown RW, Zamani F, Gardiner MG, Yu H, Pyne SG, Hyland CJ (2019) Chem Sci 10:9051–9056

    Article  CAS  Google Scholar 

  36. Li J, Yang S, Wu W, Jiang H (2018) Eur J Org Chem 2018:1284–1306

    Article  CAS  Google Scholar 

  37. Christoffel F, Ward TR (2018) Catal Lett 148:489–511

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was sponsored in part by Natural Science Foundation of Liaoning Province (No. 20170520296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingwang Min or Milad Kazemnejadi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Q., Miao, P., Chu, D. et al. Introduction of a Recyclable Basic Ionic Solvent with Bis-(NHC) Ligand Property and The Possibility of Immobilization on Magnetite for Ligand- and Base-Free Pd-Catalyzed Heck, Suzuki and Sonogashira Cross-Coupling Reactions in Water. Catal Lett 151, 3030–3047 (2021). https://doi.org/10.1007/s10562-021-03552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03552-5

Keywords

Navigation