Log in

Stabilized Palladium Nanoparticles: Synthesis, Multi-spectroscopic Characterization and Application for Suzuki–Miyaura Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present article demonstrates a simple method for synthesizing the highly stabilized Pd(0) nanoparticles by using supported 12-tungstophosphoric acid as a stabilizer as well as a carrier. The obtained material was characterized by different methods and the presence of nanoparticles on the surface of the carrier was confirmed, especially by TEM and XPS. As an application, the use of material was explored for the well-known fascinating organic transformation, Suzuki–Miyaura cross coupling reaction in aqueous medium as well as in neat H2O. It was found that the material shows an outstanding activity as the heterogeneous catalyst (0.0096 mol% of Pd) for both aqueous medium (99% conversion, TOF 96958 h−1) and in neat H2O (89% conversion, TOF 46390 h−1) towards biphenyl. The catalyst was recovered by filtration only, regenerated and reused without any significant loss in conversion. Study shows that the present catalyst is truly heterogeneous and sustainable for the said reaction, in either of the medium. The viability of the catalyst was learned toward different substrates and found to be excellent in almost all cases.

Graphical Abstract

Pd nanoparticles stabilized by supported 12-tungstophosphoric acid is proved to be sustainable and excellent for Suzuki–Miyaura reaction with very high catalyst to substrate ratio as well as TOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872

    Article  CAS  Google Scholar 

  2. Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Ultrasound promoted C–C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids. Chem Commun 17:1544–1545

    Article  Google Scholar 

  3. Hamill NA, Hardacre C, McMath SEJ (2002) In situ XAFS investigation of palladium species present during the Heck reaction in room temperature ionic liquids. Green Chem 4(2):139–142

    Article  CAS  Google Scholar 

  4. Reetz MT, Breinbauer R, Wanninger K (1996) Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladiumnickel bimetallic clusters. Tetrahedron Lett 37(26):4499–4502

    Article  CAS  Google Scholar 

  5. Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org Lett 2(15):2385–2388

    Article  CAS  Google Scholar 

  6. Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP–Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18(12):4921–4925

    Article  CAS  Google Scholar 

  7. Li Y, El-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution†. J Phys Chem B 105(37):8938–8943

    Article  CAS  Google Scholar 

  8. Moreno-Mañas M, Pleixats R, Villarroya S (2001) Fluorous phase soluble palladium nanoparticles as recoverable catalysts for Suzuki cross-coupling and Heck reactions. Organometallics 20(22):4524–4528

    Article  Google Scholar 

  9. Strimbu L, Liu J, Kaifer AE (2003) Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction. Langmuir 19(2):483–485

    Article  CAS  Google Scholar 

  10. Pathak S, Greci MT, Kwong RC, Mercado K, Prakash GKS, Olah GA et al (2000) Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres. Chem Mater 12(7):1985–1989

    Article  CAS  Google Scholar 

  11. Rocaboy C, Gladysz JA (2002) Highly active thermomorphic fluorous palladacycle catalyst precursors for the Heck reaction; evidence for a palladium nanoparticle pathway. Org Lett 4(12):1993–1996

    Article  CAS  Google Scholar 

  12. Jana NR, Wang ZL, Pal T (2000) Redox catalytic properties of palladium nanoparticles: surfactant and electron donor–acceptor effects. Langmuir 16(6):2457–2463

    Article  CAS  Google Scholar 

  13. Özkar S, Finke RG (2016) Palladium(0) nanoparticle formation, stabilization, and mechanistic studies: Pd(acac)2 as a preferred precursor, [Bu4N]2HPO4 stabilizer, plus the stoichiometry, kinetics, and minimal, four-step mechanism of the palladium nanoparticle formation and subsequent agglomeration reactions. Langmuir 32(15):3699–3716

    Article  Google Scholar 

  14. Veisi H, Faraji AR, Hemmati S, Gil A (2015) Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Appl Organomet Chem 29(8):517–523

    Article  CAS  Google Scholar 

  15. Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231

    Article  CAS  Google Scholar 

  16. Veisi H, Mirzaee N (2018) Ligand-free Mizoroki–Heck reaction using reusable modified graphene oxide-supported Pd(0) nanoparticles. Appl Organomet Chem 32(2):e4067

    Article  Google Scholar 

  17. Veisi H, Pirhayati M, Kakanejadifard A (2017) Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: as a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Tetrahedron Lett 58(45):4269–4276

    Article  CAS  Google Scholar 

  18. Farzad E, Veisi H (2018) Fe3O4/SiO2 nanoparticles coated with polydopamine as a novel magnetite reductant and stabilizer sorbent for palladium ions: synthetic application of Fe3O4/SiO2@PDA/Pd for reduction of 4-nitrophenol and Suzuki reactions. J Ind Eng Chem 60:114–124

    Article  CAS  Google Scholar 

  19. Veisi H, Najafi S, Hemmati S (2018) Pd(II)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. Int J Biol Macromol 113:186–194

    Article  CAS  Google Scholar 

  20. Veisi H, Pirhayati M, Kakanejadifard A, Mohammadi P, Abdi MR, Gholami J et al (2018) In situ green synthesis of Pd nanoparticles on tannic acid-modified magnetite nanoparticles as a green reductant and stabilizer agent: its application as a recyclable nanocatalyst (Fe3O4@TA/Pd) for reduction of 4-nitrophenol and Suzuki reactions. ChemistrySelect 3(6):1820–1826

    Article  CAS  Google Scholar 

  21. Veisi H, Mohammadi Biabri P, Falahi H (2017) l-Arginine as a base and ligand for the palladium-catalyzed C-C and C-N cross-coupling reactions in aqueous media. Tetrahedron Lett 58(35):3482–3486

    Article  CAS  Google Scholar 

  22. Veisi H, Nasrabadi NH, Mohammadi P (2016) Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions. Appl Organomet Chem 30(11):890–896

    Article  CAS  Google Scholar 

  23. Veisi H, Mirshokraie SA, Ahmadian H (2018) Synthesis of biaryls using palladium nanoparticles immobilized on metformine-functionalized polystyrene resin as a reusable and efficient nanocatalyst. Int J Biol Macromol 108:419–425

    Article  CAS  Google Scholar 

  24. Heidari F, Hekmati M, Veisi H (2017) Magnetically separable and recyclable Fe3O4@SiO2/isoniazide/Pd nanocatalyst for highly efficient synthesis of biaryls by Suzuki coupling reactions. J Colloid Interface Sci 501:175–184

    Article  CAS  Google Scholar 

  25. Kogan V, Aizenshtat Z, Popovitz-Biro R, Neumann R (2002) Carbon–carbon and carbon–nitrogen coupling reactions catalyzed by palladium nanoparticles derived from a palladium substituted keggin-type polyoxometalate. Org Lett 4(20):3529–3532

    Article  CAS  Google Scholar 

  26. Zhang J, Keita B, Nadjo L, Mbomekalle IM, Liu T (2008) Self-assembly of polyoxometalate macroanion-capped Pd0 nanoparticles in aqueous solution. Langmuir 24(10):5277–5283

    Article  CAS  Google Scholar 

  27. D’Souza L, Noeske M, Richards RM, Kortz U (2013) Palladium (0) metal clusters: novel Krebs type polyoxoanions stabilized, extremely active hydrogenation catalyst. Appl Catal A 453:262–271

    Article  Google Scholar 

  28. Villanneau R, Roucoux A, Beaunier P, Brouri D, Proust A (2014) Simple procedure for vacant POM-stabilized palladium (0) nanoparticles in water: structural and dispersive effects of lacunary polyoxometalates. RSC Adv 4(50):26491–26498

    Article  CAS  Google Scholar 

  29. Izumi Y, Tanaka Y, Urabe K (1982) Selective catalytic hydrogenation of, propargyl alcohol with heteropoly acid-modified palladium. Chem Lett 11(5):679–682

    Article  Google Scholar 

  30. Izumi Y, Satoh Y, Kondoh H, Urabe K (1992) Reductive carbonylation of nitrobenzene catalyzed by heteropolyanion-modified palladium. J Mol Catal 72(1):37–46

    Article  CAS  Google Scholar 

  31. Liu H, Sun W, Yue B, ** S, Deng J, **e G (1997) Preparation and characterization of keggin type polyoxotungstates containing palladium or iridium. Synth React Inorg Met-Org Chem 27(4):551–566

    Article  CAS  Google Scholar 

  32. Maksimov GM, Zaikovskii VI, Matveev KI, Likholobov VA (2000) Preparation of polyoxometalate-stabilized colloidal solutions of palladium metal and catalysts supported on them. Kinet Catal 41(6):844–852

    Article  CAS  Google Scholar 

  33. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed 41(11):1911–1914

    Article  CAS  Google Scholar 

  34. Kogan V, Aizenshtat Z, Neumann R (2002) Preferential catalytic hydrogenation of aromatic compounds versus ketones with a palladium substituted polyoxometalate as pre-catalyst. New J Chem 26(3):272–274

    Article  CAS  Google Scholar 

  35. Mandal S, Das A, Srivastava R, Sastry M (2005) Keggin ion mediated synthesis of hydrophobized Pd nanoparticles for multifunctional catalysis. Langmuir 21(6):2408–2413

    Article  CAS  Google Scholar 

  36. De bruyn M, Neumann R (2007) Stabilization of palladium nanoparticles by polyoxometalates appended with alkylthiol tethers and their use as binary catalysts for liquid phase aerobic oxydehydrogenation. Adv Synth Catal 349(10):1624–1628

    Article  Google Scholar 

  37. Keita B, Zhang G, Dolbecq A, Mialane P, Sécheresse F, Miserque F et al (2007) MoV–MoVI mixed valence polyoxometalates for facile synthesis of stabilized metal nanoparticles: electrocatalytic oxidation of alcohols. J Phys Chem C 111(23):8145–8148

    Article  CAS  Google Scholar 

  38. Sun M, Zhang J, Zhang Q, Wang Y, Wan H (2009) Polyoxometalate-supported Pd nanoparticles as efficient catalysts for the direct synthesis of hydrogen peroxide in the absence of acid or halide promoters. Chem Commun 34:5174–5176

    Article  Google Scholar 

  39. Liu R, Li S, Yu X, Zhang G, Zhang S, Yao J et al (2012) A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. J Mater Chem 22(8):3319–3322

    Article  CAS  Google Scholar 

  40. Mori K, Furubayashi K, Okada S, Yamashita H (2012) Synthesis of Pd nanoparticles on heteropolyacid-supported silica by a photo-assisted deposition method: an active catalyst for the direct synthesis of hydrogen peroxide. RSC Adv 2(3):1047–1054

    Article  CAS  Google Scholar 

  41. Rafiee E, Kahrizi M, Joshaghani M, Ghaderi-Sheikhi Abadi P (2016) New strategy by a two-component heterogeneous catalytic system composed of Pd–PVP–Fe and heteropoly acid as co-catalyst for Suzuki coupling reaction. Res Chem Intermed 42(6):5573–5585

    Article  CAS  Google Scholar 

  42. He P, Xu B, Xu X, Song L, Wang X (2016) Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as single-atom catalysts. Chem Sci 7(2):1011–1015

    Article  CAS  Google Scholar 

  43. Patel S, Purohit N, Patel A (2003) Synthesis, characterization and catalytic activity of new solid acid catalysts, H3PW12O40 supported on to hydrous zirconia. J Mol Catal A 192(1):195–202

    Article  CAS  Google Scholar 

  44. Bhatt N, Shah C, Patel A (2007) 12-tungstophosphoric and 12-tungstosilicicacid supported onto hydrous zirconia for liquid phase tert-butylation of m-cresol. Catal Lett 117(3):146–152

    Article  CAS  Google Scholar 

  45. Pathan S, Patel A (2012) Heck coupling catalyzed by Pd exchanged supported 12-tunstophosphoric acid—an efficient ligand free, low Pd-loading heterogeneous catalyst. RSC Adv 2(1):116–120

    Article  CAS  Google Scholar 

  46. Vogel AI, Jeffery GH (1989) Vogel’s textbook of quantitative chemical analysis. Longman, London

    Google Scholar 

  47. Militello MC, Simko SJ (1994) Elemental palladium by XPS. Surf Sci Spectra 3(4):387–394

    Article  CAS  Google Scholar 

  48. Röhlich C, Wirth AS, Köhler K (2012) Suzuki coupling reactions in neat water as the solvent: where in the biphasic reaction mixture do the catalytic reaction steps occur? Chem Eur J 18(48):15485–15494

    Article  Google Scholar 

  49. Guan Z, Hu J, Gu Y, Zhang H, Li G, Li T (2012) PdCl2(py)2 encaged in monodispersed zeolitic hollow spheres: a highly efficient and reusable catalyst for Suzuki–Miyaura cross-coupling reaction in aqueous media. Green Chem 14(7):1964–1970

    Article  CAS  Google Scholar 

  50. Zhang L, Su Z, Jiang F, Zhou Y, Xu W, Hong M (2013) Catalytic palladium nanoparticles supported on nanoscale MOFs: a highly active catalyst for Suzuki–Miyaura cross-coupling reaction. Tetrahedron 69(44):9237–9244

    Article  CAS  Google Scholar 

  51. Shi Z, Bai X-F (2015) Novel Pd nanocubes supported on activated carbon as a catalyst for the Suzuki-Miyaura coupling reaction. Open Mater Sci J 9:173–177

    Article  CAS  Google Scholar 

  52. Isfahani AL, Mohammadpoor-Baltork I, Mirkhani V, Khosropour AR, Moghadam M, Tangestaninejad S et al (2013) Palladium nanoparticles immobilized on nano-silica triazine dendritic polymer (Pdnp-nSTDP): an efficient and reusable catalyst for Suzuki–Miyaura cross-coupling and Heck reactions. Adv Synth Catal 355(5):957–972

    Article  CAS  Google Scholar 

  53. Gholinejad M, Razeghi M, Najera C (2015) Magnetic nanoparticles supported oxime palladacycle as a highly efficient and separable catalyst for room temperature Suzuki–Miyaura coupling reaction in aqueous media. RSC Adv 5(61):49568–49576

    Article  CAS  Google Scholar 

  54. Abbas Khakiani B, Pourshamsian K, Veisi H (2015) A highly stable and efficient magnetically recoverable and reusable Pd nanocatalyst in aqueous media heterogeneously catalysed Suzuki C–C cross-coupling reactions. Appl Organomet Chem 29(5):259–265

    Article  CAS  Google Scholar 

  55. Sarvestani M, Azadi R (2016) Palladium nanoparticles deposited on a graphene–benzimidazole support as an efficient and recyclable catalyst for aqueous-phase Suzuki–Miyaura coupling reaction. Appl Organomet Chem 31(8):e3667

    Article  Google Scholar 

  56. Karimi B, Mansouri F, Vali H (2014) A highly water-dispersible/magnetically separable palladium catalyst based on a Fe3O4@SiO2 anchored TEG-imidazolium ionic liquid for the Suzuki–Miyaura coupling reaction in water. Green Chem 16(5):2587–2596

    Article  CAS  Google Scholar 

  57. Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Efficient Suzuki–Miyaura coupling reaction in water: stabilized Pdo-montmorillonite clay composites catalyzed reaction. Appl Catal A 469:350–356

    Article  CAS  Google Scholar 

  58. Dutt S, Kumar R, Siril PF (2015) Green synthesis of a palladium–polyaniline nanocomposite for green Suzuki–Miyaura coupling reactions. RSC Adv 5(43):33786–33791

    Article  CAS  Google Scholar 

  59. Yang F, Chi C, Dong S, Wang C, Jia X, Ren L et al (2015) Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal Today 256:186–192

    Article  CAS  Google Scholar 

  60. Ghazali-Esfahani S, Păunescu E, Bagherzadeh M, Fei Z, Laurenczy G, Dyson PJ (2016) A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer. Sci China Chem 59(4):482–486

    Article  CAS  Google Scholar 

  61. Sabounchei SJ, Hosseinzadeh M, Panahimehr M, Nematollahi D, Khavasi HR, Khazalpour S (2015) A palladium–phosphine catalytic system as an active and recycable precatalyst for Suzuki coupling in water. Transition Met Chem 40(6):657–663

    Article  CAS  Google Scholar 

  62. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95(7):2457–2483

    Article  CAS  Google Scholar 

  63. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coord Chem Rev 311:1–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Department of Atomic Energy (DAE) and Board of Research in Nuclear Science (BRNS), Project No. 37(2)/14/34/2014-BRNS, Mumbai, for the financial support. One of the authors Mr. Anish Patel is thankful to the same for the grant of JRF. We are also thankful to Department of Chemistry, The Maharaja Sayajirao University of Baroda for BET surface area analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Patel.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Patel, A. Stabilized Palladium Nanoparticles: Synthesis, Multi-spectroscopic Characterization and Application for Suzuki–Miyaura Reaction. Catal Lett 148, 3534–3547 (2018). https://doi.org/10.1007/s10562-018-2559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2559-1

Keywords

Navigation