Log in

Inspiration from Nature for Heterogeneous Catalysis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The desire to attain high activity and selectivity achieved by systems in Nature has long been a source of inspiration for research in heterogeneous catalysis, and significant progress has been made. A summary is presented here of the progress in applying concepts in enzymes and cellular systems to develop artificial systems. The discussion is organized according to the length scale: dimensions of small molecules (~1 nm), protein (nm–μm), and cells (~μm). At the smallest dimension, the focus is on the active site, and effects observed include functional group cooperation, substrate partitioning, site isolation, transition state stabilization, and pK shifts. At the intermediate dimension of a protein, effects observed include size exclusion, steric constraint, and docking and induced fit. Interestingly, the oscillation phenomenon observed in artificial systems, which is due to collective behavior of atoms, is not observed in natural systems. At the largest, cellular scale, processes of interest include cascade reaction and tandem reactions, and metabolon is one natural system to emulate. There are interesting but nascent developments to emulate phenomena such as self-healing, stimuli-responsiveness, reaction coupling, and designed hierarchical distribution of pores and channels across all scales. Much could be gained if catalysts can be designed to incorporate these properties.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Do LH, Lippard SJ (2011) J Am Chem Soc 133:10568

    Article  CAS  Google Scholar 

  2. Chen K, Que L Jr (2001) J Am Chem Soc 123:6327

    Article  CAS  Google Scholar 

  3. Allard MM, Sonk JA, Heeg MJ, McGarvey BR, Schlegel HB, Verani CN (2012) Angew Chem Int Ed Engl 51:3178

    Article  CAS  Google Scholar 

  4. Okrut A, Runnebaum RC, Ouyang X, Lu J, Aydin C, Hwang S-J, Zhang S, Olatunji-Ojo OA, Durkin KA, Dixon DA, Gates BC, Katz A (2014) Nat Nanotech 9:459

    Article  CAS  Google Scholar 

  5. de Silva N, Ha J-M, Solovyov A, Nigra MM, Ogino I, Yeh SW, Durkin KA, Katz A (2010) Nat Chem 2:1062

    Article  Google Scholar 

  6. Corma A (2004) Catal Rev Sci Eng 46:369

    Article  CAS  Google Scholar 

  7. Grunes J, Zhu J, Somorjai GA (2003) Chem Commun 18:2257

    Article  Google Scholar 

  8. Lillerud KP, Olsbye U, Tilset M (2010) Top Catal 53:859

    Article  CAS  Google Scholar 

  9. Coppens M-O (2012) Cur Opin Chem Eng 1:281

    Article  CAS  Google Scholar 

  10. Schwartz TJ, O’Neill BJ, Shanks BH, Dumesic JA (2014) ACS Catal 4:2060

    Article  CAS  Google Scholar 

  11. Chechik V (2008) Ann Rep Prog Chem B: Org Chem 104:331

    Article  CAS  Google Scholar 

  12. Margelefsky EL, Zeidan RK, Davis ME (2008) Chem Soc Rev 37:1118

    Article  CAS  Google Scholar 

  13. Lee J-K, Kung MC, Kung HH (2008) Top Catal 49:136

    Article  CAS  Google Scholar 

  14. Martin M, Manea F, Fiammengo R, Prins LJ, Pasquato L, Scrimin P (2007) J Am Chem Soc 129:6982

    Article  CAS  Google Scholar 

  15. Livieri M, Mancin F, Saielli G, Chin J, Tonellato U (2007) Chem Eur J 13:2246

    Article  CAS  Google Scholar 

  16. Breinbauer R, Jacobsen EN (2000) Angew Chem Int Ed Engl 39:3604

    Article  CAS  Google Scholar 

  17. Maeno Z, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2012) Heterocycles 86:947

    Article  CAS  Google Scholar 

  18. Moon S-J, Jeon JW, Kim H, Suh MP, Suh J (2000) J Am Chem Soc 122:7742

    Article  CAS  Google Scholar 

  19. Bass JD, Solovyov A, Pascall AJ, Katz A (2006) J Am Chem Soc 128:3737

    Article  CAS  Google Scholar 

  20. Zeidan RK, Dufaud V, Davis ME (2006) J Catal 239:299

    Article  CAS  Google Scholar 

  21. Margelefsky EL, Zeidan RK, Dufaud V, Davis ME (2007) J Am Chem Soc 129:13691

    Article  CAS  Google Scholar 

  22. Solovyov A, Amundsen TJ, Daniels JJ, Kim Y-G, Katz A (2008) Chem Mater 20:6316

    Article  CAS  Google Scholar 

  23. Brunelli NA, Didas SA, Venkatasubbaiah K, Jones CW (2012) J Am Chem Soc 134:13950

    Article  CAS  Google Scholar 

  24. Almeida-Lenero K, Rosas-Zavala YA, Barba-Behrens N (1996) Educacion Quimica 7:36

    CAS  Google Scholar 

  25. Barbaro P, Bianchini C, Dal Santo V, Meli A, Moneti S, Pirovano C, Psaro R, Sordelli L, Francesco V (2008) Organometallics 27:2809

    Article  CAS  Google Scholar 

  26. Langhendries G, DeVos DE, Baron GV, Jacobs PA (1999) J Catal 187(2):453

    Article  CAS  Google Scholar 

  27. Zhang X, Xu H, Dong Z, Wang Y, Liu J, Shen J (2004) J Am Chem Soc 126:10556

    Article  CAS  Google Scholar 

  28. Suh Y-W, Kung MC, Wang Y, Kung HH (2006) J Am Chem Soc 128:2776

    Article  CAS  Google Scholar 

  29. Murase T, Nishijima Y, Fujita M (2012) J Am Chem Soc 134:162

    Article  CAS  Google Scholar 

  30. Henao JD, Suh Y-W, Lee J-K, Kung MC, Kung HH (2008) J Am Chem Soc 130:16142

    Article  CAS  Google Scholar 

  31. Niu Y, Sun L, Crooks RM (2003) Macromolec 36:5725

    Article  CAS  Google Scholar 

  32. Khaledi MG, Rodgers AH (1990) Anal Chim Acta 239:121

    Article  CAS  Google Scholar 

  33. Underwood AL (1982) Anal Chim Acta 140:89

    Article  CAS  Google Scholar 

  34. Cargnello M, Montini T, Polizzi S, Wieder NL, Gorte RJ, Graziani M, Fornasiero P (2010) Dalton Trans 39:2122

    Article  CAS  Google Scholar 

  35. Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA (2009) Nat Mater 8:126

    Article  CAS  Google Scholar 

  36. Arnal PM, Comotti M, Schuth F (2006) Angew Chem Int Ed Engl 45:8224

    Article  CAS  Google Scholar 

  37. Lu J, Fu B, Kung MC, **ao G, Elam JW, Kung HH, Stair PC (2012) Science 335:1205

    Article  CAS  Google Scholar 

  38. Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 24:2563

    Article  Google Scholar 

  39. Helms B, Frechet JMJ (2006) Adv Synth Catal 348:1125

    Article  CAS  Google Scholar 

  40. Shen J, Kung MC, Shen Z, Wang Z, Gunderson WA, Hoffman BM, Kung HH (2014) J Am Chem Soc 136:5185

    Article  CAS  Google Scholar 

  41. Tian Y, Li G-D, Chen J-S (2003) J Am Chem Soc 125:6622

    Article  CAS  Google Scholar 

  42. Qi G, Xu J, Su J, Chen J, Wang X, Deng F (2013) J Am Chem Soc 135:6762

    Article  CAS  Google Scholar 

  43. Stephan DW (2009) Dalton Trans 17:3129

    Article  Google Scholar 

  44. Erker G (2011) Dalton Trans 40:7475

    Article  CAS  Google Scholar 

  45. Wu YY, Mashayekhi NA, Kung HH (2013) Catal Sci Technol 3:2881

    Article  CAS  Google Scholar 

  46. Mashayekhi NA, Wu YY, Kung MC, Kung HH (2012) Chem Commun 48:10096

    Article  CAS  Google Scholar 

  47. Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Angew Chem Int Ed Engl 52:5101

    Article  CAS  Google Scholar 

  48. Cargnello M, Delgado Jaén JJ, Hernández Garrido JC, Bakhmutsky K, Montini T, Calvino Gámez JJ, Gorte RJ, Fornasiero P (2012) Science 337:713

    Article  CAS  Google Scholar 

  49. An K, Somorjai GA (2012) ChemCatChem 4:1512

    Article  CAS  Google Scholar 

  50. Sau TK, Rogach AL (2010) Adv Mater 22:1781

    Article  CAS  Google Scholar 

  51. Hermann JC, Ghanem E, Li Y, Raushel FM, Irwin JJ, Shoichet BK (2006) J Am Chem Soc 128:15882

    Article  CAS  Google Scholar 

  52. Bernacki K, Kalyanaraman C, Jacobson MP (2005) J Biomol Screening 10:675

    Article  CAS  Google Scholar 

  53. Kalyanaraman C, Bernacki K, Jacobson MP (2005) Biochem 44:2059

    Article  CAS  Google Scholar 

  54. Sastre G, Corma A (2009) J Molec Catal A 305:3

    Article  CAS  Google Scholar 

  55. Corma A, Garcia H (1998) Top Catal 6:127

    Article  CAS  Google Scholar 

  56. Smit B, Maesen TLM (2008) Chem Rev 108:4125

    Article  CAS  Google Scholar 

  57. Smit B, Maesen TLM (2008) Nat 451:671

    Article  CAS  Google Scholar 

  58. Derouane EG (1986) J Catal 100:541

    Article  CAS  Google Scholar 

  59. Derouane EG, Andre JM, Lucas AA (1988) J Catal 110:58

    Article  CAS  Google Scholar 

  60. Gounder R, Iglesia E (2013) Chemi Commun 49:3491

    Article  CAS  Google Scholar 

  61. Payne CM, Jiang W, Shirts MR, Himmel ME, Crowley MF, Beckham GT (2013) J Am Chem Soc 135:1883162

    Article  Google Scholar 

  62. Ertl G, Norton PR, Ruestig J (1982) Phys Rev Lett 49:177

    Article  CAS  Google Scholar 

  63. Cox MP, Ertl G, Imbihl R (1985) Phys Rev Lett 54:1725

    Article  CAS  Google Scholar 

  64. Kung HH (1989) Stud Surf Sci Catal Elsevier Sci Publ 45:172

    Google Scholar 

  65. Scott AI (2003) J Organ Chem 68:2529

    Article  CAS  Google Scholar 

  66. Fogg DE (2008) Canad J Chem 86:931

    Article  CAS  Google Scholar 

  67. Huang H, Denard CA, Alamillo R, Crisci AJ, Miao Y, Dumesic JA, Scott SL, Zhao H (2014) ACS Catal 4:2165

    Article  CAS  Google Scholar 

  68. Schwartz TJ, Goodman SM, Osmundsen CM, Taarning E, Mozuch MD, Gaskell J, Cullen D, Kersten PJ, Dumesic JA (2013) ACS Catal 3:2689

    Article  CAS  Google Scholar 

  69. Zhang F, Jiang H, Li X, Wu X, Li H (2014) ACS Catal 4:394–401

    Article  CAS  Google Scholar 

  70. Vriezema DM, Garcia PML, Oltra NS, Natzakis NS, Kuiper SM, Nolte RJM, Rowan AE, van Hest JCM (2007) Angew Chem Int Ed Engl 46:7378

    Article  CAS  Google Scholar 

  71. de Hoog H-PM, Nallani M, Tomczak N (2012) Soft Matter 8:4551

    Google Scholar 

  72. Motokura K, Fujita N, Mori K, Mizugaki T, Ebitani K, Kaneda K (2005) J Am Chem Soc 127:9674

    Article  CAS  Google Scholar 

  73. Velot C, Mixon MB, Teige M, Srere PA (1997) Biochem 36:14271

    Article  CAS  Google Scholar 

  74. Yamada Y, Tsung C-K, Huang W, Huo Z, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang P (2011) Nat Chem 3:372

    Article  CAS  Google Scholar 

  75. Yang G, Kawata H, Lin Q, Wang J, ** Y, Zeng C, Yoneyama Y, Tsubaki N (2013) Chem Sci 4:3958

    Article  CAS  Google Scholar 

  76. Liu S, Motta A, Delferro M, Marks TJ (2013) J Am Chem Soc 135:8830

    Article  CAS  Google Scholar 

  77. Lutterman DA, Surendranath Y, Nocera DG (2009) J Am Chem Soc 131:3838

    Article  CAS  Google Scholar 

  78. Huynh M, Bediako DK, Nocera DG (2014) J Am Chem Soc 136:6002

    Article  CAS  Google Scholar 

  79. Amendola V, Meneghetti M (2009) Nanoscale 1:74

    Article  CAS  Google Scholar 

  80. Cao S, Chen J, Ge Y, Fang L, Zhang Y, Turner APF (2014) Chem Commun 50:118

    Article  CAS  Google Scholar 

  81. Dou Y, Han J, Wang T, Wei M, Evans DG, Duan X (2012) Langmuir 28:9535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy, Basic Energy Sciences, Grant No. DE-FG02-01ER15184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold H. Kung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, H.H., Kung, M.C. Inspiration from Nature for Heterogeneous Catalysis. Catal Lett 144, 1643–1652 (2014). https://doi.org/10.1007/s10562-014-1341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1341-2

Keywords

Navigation