Log in

Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The pro-aging miRNA, miR-34a, is hyperactivated in the cardiac myocardial tissues of patients and mice with diabetes, leading to diabetic cardiomyopathy (DCM). Increasing evidence suggests that dihydromyricetin (DHM) can be used to effectively treat cardiomyopathy. In this study, we investigated whether DHM affects the expression of miR-34a in DCM.

Methods

The expression of miR-34a in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice was determined by microRNA isolation and quantitative reverse transcription-polymerase chain reaction. Lipofectamine 3000 was used to transfect cardiomyocytes with miR-34a inhibitor, miR-34a mimics, and miR-control. These agents were intravenously injected into the tail vein of streptozotocin-induced diabetic mice. Autophagy and apoptosis were assessed in high-glucose-induced cardiomyocytes and cardiac tissue in diabetic mice by western blotting, immunofluorescence, Masson staining, hematoxylin and eosin staining (H&E), and electron microscopy.

Results

DHM clearly ameliorated the cardiac dysfunction in the diabetic mice. The expression of miR-34a was up-regulated in high-glucose-induced cardiomyocytes and in the hearts of diabetic mice, thus impairing autophagy. Treatment with DHM decreased the expression of miR-34a and rescued the impairment of autophagy in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice, while the miR-34a mimic offset the effect of DHM with respect to the development of DCM by inhibiting autophagy.

Conclusions

By decreasing the expression of miR-34a, DHM restores impaired autophagy, and thus ameliorates DCM. Therefore, DHM may potentially be used in the treatment of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CON:

Control group

CON + DHM:

Control group fed DHM

DCM:

Diabetic cardiomyopathy

DHM:

Dihydromyricetin

DM:

Diabetic group

DM + DHM:

Diabetic group fed DHM

DM + DHM + miR-control:

Diabetic group fed DHM and administered miR-control via tail vein injection

DM + DHM + miR-34a inhibitor:

Diabetic group fed DHM and injected with miR-34a inhibitor

DM + DHM + miR-34a mimic:

Diabetic group fed DHM and administered miR-34a mimic via tail vein injection

H&E:

Hematoxylin and eosin

miRNA:

MicroRNA

T2D:

Type 2 diabetes mellitus

RT-PCR:

Reverse transcription-polymerase chain reaction

STZ:

Streptozotocin

TEM:

Transmission electron microscopy

HR:

Heart rate

LVEDD:

Left ventricular end-diastolic dimension

LVESD:

Left ventricular end-systolic dimension

LVEF:

Left ventricular ejection fraction

LVFS:

Left ventricular systolic function

References

  1. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. CIRCULATION. 2007;115:3213–23.

    Article  Google Scholar 

  2. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. CARDIOLOGY. 2002;98:33–9.

    Article  CAS  Google Scholar 

  3. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. PHARMACOL THERAPEUT. 2014;142:375–415.

    Article  CAS  Google Scholar 

  4. Zou MH, **e Z. Regulation of interplay between autophagy and apoptosis in the diabetic heart: new role of AMPK. AUTOPHAGY. 2013;9:624–5.

    Article  CAS  Google Scholar 

  5. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy. Circ Res. 2018;122:624–38.

    Article  CAS  Google Scholar 

  6. Zhang Y, Sun X, Icli B, Feinberg MW. Emerging roles for MicroRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38:145–68.

    Article  CAS  Google Scholar 

  7. Zhou Q, Lv D, Chen P, Xu T, Fu S, Li J, et al. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front Genet 2014;5:185.

  8. Ghosh N, Katare R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol. 2018;17:43.

    Article  CAS  Google Scholar 

  9. Choi YJ, Lin C, Ho JJ, He X, Okada N, Bu P, et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011;13:1353–60.

    Article  CAS  Google Scholar 

  10. Liu K, Huang J, **e M, Yu Y, Zhu S, Kang R, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. AUTOPHAGY. 2014;10:442–52.

    Article  CAS  Google Scholar 

  11. Wu Y, Dai X, Ni Z, Yan X, He F, Lian J. The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy. IRAN J BASIC MED SCI. 2017;20:1125–30.

    PubMed  PubMed Central  Google Scholar 

  12. Liu L, Ren W, Chen K. MiR-34a promotes apoptosis and inhibits autophagy by targeting HMGB1 in acute myeloid leukemia cells. Cell Physiol Biochem. 2017;41:1981–92.

    Article  CAS  Google Scholar 

  13. Shen Y, Xu H, Pan X, Wu W, Wang H, Yan L, et al. miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. EXP THER MED. 2017;14:5589–96.

    Article  CAS  Google Scholar 

  14. Chen Y, Luo H, Sun L, Xu M, Yu J, Liu L, et al. Dihydromyricetin attenuates myocardial hypertrophy induced by transverse aortic constriction via oxidative stress inhibition and SIRT3 pathway enhancement. Int J Mol Sci. 2018;19:2592.

    Article  Google Scholar 

  15. Zhang Q, Liu J, Liu B, **a J, Chen N, Chen X, et al. Dihydromyricetin promotes hepatocellular carcinoma regression via a p53 activation-dependent mechanism. SCI REP-UK 2015;4:4628.

  16. Hou X, Tong Q, Wang W, **ong W, Shi C, Fang J. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways. Life Sci. 2015;130:38–46.

    Article  CAS  Google Scholar 

  17. Wu B, Lin J, Luo J, Han D, Fan M, Guo T, et al. Dihydromyricetin protects against diabetic cardiomyopathy in streptozotocin-induced diabetic mice. Biomed Res Int. 2017;2017:1–13.

    Google Scholar 

  18. Sreejit P, Kumar S, Verma RS. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cellular & Developmental Biology - Animal. 2008;44:45–50.

    Article  CAS  Google Scholar 

  19. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004;117:2805–12.

    Article  CAS  Google Scholar 

  20. Zhang Y, Yao Y, Qiu X, Wang G, Hu Z, Chen S, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol. 2019;20:433–46.

    Article  CAS  Google Scholar 

  21. Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124:1160–2.

    Article  CAS  Google Scholar 

  22. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. DIABETOLOGIA. 2018;61:21–8.

    Article  CAS  Google Scholar 

  23. Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. THER ADV ENDOCRINOL. 2019;10:1956862462.

    Google Scholar 

  24. Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44:457–64.

    Article  CAS  Google Scholar 

  25. Beddhu S, Chertow GM, Greene T, Whelton PK, Ambrosius WT, Cheung AK, et al. Effects of intensive systolic blood pressure lowering on cardiovascular events and mortality in patients With type 2 diabetes mellitus on standard glycemic control and in those without diabetes mellitus: reconciling results from ACCORD BP and SPRINT. J Am Heart Assoc 2018;7:e009326.

  26. Birkeland KI, Jørgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. The Lancet Diabetes & Endocrinology. 2017;5:709–17.

    Article  CAS  Google Scholar 

  27. Mann JFE, Fonseca V, Mosenzon O, Raz I, Goldman B, Idorn T, et al. Effects of Liraglutide versus placebo on cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. CIRCULATION. 2018;138:2908–18.

    Article  CAS  Google Scholar 

  28. Mancini SJ, Boyd D, Katwan OJ, Strembitska A, Almabrouk TA, Kennedy S, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci Rep-UK 2018;8:5276.

  29. Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and Management of Diabetic Cardiomyopathy. J Am Coll Cardiol. 2018;71:339–51.

    Article  Google Scholar 

  30. Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, et al. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep-UK 2016;6:30252.

  31. Zhang X, Zhang Z, Yang Y, Suo Y, Liu R, Qiu J, et al. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovasc Diabetol 2018;17:160.

  32. Li X, Ke X, Li Z, Li B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Bioph res Co 2019;514(1):1–8.

    Article  CAS  Google Scholar 

  33. Wu B, Lin J, Luo J, Han D, Fan M, Guo T, et al. Dihydromyricetin protects against diabetic cardiomyopathy in Streptozotocin-induced diabetic mice. Biomed Res Int. 2017;2017:1–13.

    Google Scholar 

  34. Meng G, Yang S, Chen Y, Yao W, Zhu H, Zhang W. Attenuating effects of dihydromyricetin on angiotensin II-induced rat cardiomyocyte hypertrophy related to antioxidative activity in a NO-dependent manner. Pharm Biol. 2014;53:904–12.

    Article  Google Scholar 

  35. Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, et al. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1α-Sirt3 signaling pathway. ENDOCRINE. 2015;50:378–89.

    Article  CAS  Google Scholar 

  36. Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852:252–61.

    Article  CAS  Google Scholar 

  37. Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852:232–42.

    Article  CAS  Google Scholar 

  38. **e Z, Lau K, Eby B, Lozano P, He C, Pennington B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. DIABETES. 2011;60:1770–8.

    Article  CAS  Google Scholar 

  39. Fomison-Nurse I, Saw EEL, Gandhi S, Munasinghe PE, Van Hout I, Williams MJA, et al. Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death & Differentiation. 2018;25:1336–49.

    Article  CAS  Google Scholar 

  40. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. NATURE. 2013;495:107–10.

    Article  CAS  Google Scholar 

  41. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. BIOCHEM BIOPH RES CO. 2010;398:735–40.

    Article  CAS  Google Scholar 

  42. Zhang L, He S, Guo S, **e W, **n R, Yu H, et al. Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J Diabetes Complicat. 2014;28:259–64.

    Article  Google Scholar 

  43. Liu K, Huang J, **e M, Yu Y, Zhu S, Kang R, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell. AUTOPHAGY. 2014;10:442.

    Article  CAS  Google Scholar 

  44. Pang J, **ong H, Lin P, Lai L, Yang H, Liu Y, et al. Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. Cell Death and Disease. 2017;8:e3079.

    Article  Google Scholar 

  45. Song L, Zhou F, Cheng L, Hu M, He Y, Zhang B, et al. MicroRNA-34a suppresses autophagy in alveolar type II epithelial cells in acute lung injury by inhibiting FoxO3 expression. INFLAMMATION. 2017;40:927–36.

    Article  CAS  Google Scholar 

  46. Yang J, Chen D, He Y, Meléndez A, Feng Z, Hong Q, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. AGE. 2013;35:11–22.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Agriculture, Life and Environment Science at Zhejiang University for their valuable technical assistance.

Funding

This research was supported by grants from the National Natural Science Foundation of China (81873120), Social Development Project of Public Welfare Technology Application in Zhejiang Province (LGF19H020006).

Author information

Authors and Affiliations

Authors

Contributions

Tingjuan Ni conceived the study, acquired data, interpreted the results, and drafted the manuscript; Na Lin, Wenqiang Lu, and Zhenzhu Sun performed some experiments; Tingjuan Ni assisted technicians with animal sacrifice; Hui Lin determined the food composition; Jufang Chi, Hangyuan Guo, Tingjuan NI, and Na Lin approved the final version. Tingjuan Ni designed the study, interpreted the results and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jufang Chi or Hangyuan Guo.

Ethics declarations

All animal protocols were approved by the Animal Care and Use Committee of the Shaoxing Hospital, Zhejiang University School of Medicine. All procedures performed in studies involving animals met the ethical standards of the institution or practice conducting the study.

Conflict of Interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, T., Lin, N., Lu, W. et al. Dihydromyricetin Prevents Diabetic Cardiomyopathy via miR-34a Suppression by Activating Autophagy. Cardiovasc Drugs Ther 34, 291–301 (2020). https://doi.org/10.1007/s10557-020-06968-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-06968-0

Keywords

Navigation