Log in

Angiogenesis and vascular stability in eicosanoids and cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angiogenesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Potente, M., Gerhardt, H., & Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell, 146(6), 873–887. https://doi.org/10.1016/j.cell.2011.08.039.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., & Ferrara, N. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor-growth in vivo. Nature, 362(6423), 841–844. https://doi.org/10.1038/362841a0.

    Article  PubMed  CAS  Google Scholar 

  4. Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., & Jain, R. K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91(3), 1071–1121. https://doi.org/10.1152/physrev.00038.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Caduff, J. H., Fischer, L. C., & Burri, P. H. (1986). Scanning electron microscope study of the develo** microvasculature in the postnatal rat lung. The Anatomical Record, 216(2), 154–164. https://doi.org/10.1002/ar.1092160207.

    Article  PubMed  CAS  Google Scholar 

  6. Paku, S., Dezso, K., Bugyik, E., Tovari, J., Timar, J., Nagy, P., et al. (2011). A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: inverse sprouting. The American Journal of Pathology, 179(3), 1573–1585. https://doi.org/10.1016/j.ajpath.2011.05.033.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257. https://doi.org/10.1038/35025220.

    Article  PubMed  CAS  Google Scholar 

  8. Adams, R. H., & Alitalo, K. (2007). Molecular regulation of angiogenesis and lymphangiogenesis. Nature Reviews. Molecular Cell Biology, 8, 464–478. https://doi.org/10.1038/nrm2183.

    Article  PubMed  CAS  Google Scholar 

  9. Potente, M., & Carmeliet, P. (2017). The link between angiogenesis and endothelial metabolism. Annual Review of Physiology, 79, 43–66. https://doi.org/10.1146/annurev-physiol-021115-105134.

    Article  PubMed  CAS  Google Scholar 

  10. Kandel, J., Bossywetzel, E., Radvanyi, F., Klagsbrun, M., Folkman, J., & Hanahan, D. (1991). Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell, 66(6), 1095–1104. https://doi.org/10.1016/0092-8674(91)90033-U.

    Article  PubMed  CAS  Google Scholar 

  11. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161(6), 1163–1177. https://doi.org/10.1083/jcb.200302047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Phng, L. K., & Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Developmental Cell, 16(2), 196–208. https://doi.org/10.1016/j.devcel.2009.01.015.

    Article  PubMed  CAS  Google Scholar 

  13. Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., & Shima, D. T. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes & Development, 16(20), 2684–2698. https://doi.org/10.1101/gad.242002.

    Article  CAS  Google Scholar 

  14. Adams, R. H., & Eichmann, A. (2010). Axon guidance molecules in vascular patterning. Cold Spring Harbor Perspectives in Biology, 2(5), a001875. https://doi.org/10.1101/cshperspect.a001875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S. W., & Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116(5), 829–840. https://doi.org/10.1182/blood-2009-12-257832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C., & Dejana, E. (2006). Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. The Journal of Cell Biology, 174(4), 593–604. https://doi.org/10.1083/jcb.200602080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Davis, G. E., & Bayless, K. J. (2003). An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation, 10(1), 27–44. https://doi.org/10.1038/sj.mn.7800175.

    Article  PubMed  CAS  Google Scholar 

  18. Iruela-Arispe, M. L., & Davis, G. E. (2009). Cellular and molecular mechanisms of vascular lumen formation. Developmental Cell, 16(2), 222–231. https://doi.org/10.1016/j.devcel.2009.01.013.

    Article  PubMed  CAS  Google Scholar 

  19. Axnick, J., & Lammert, E. (2012). Vascular lumen formation. Current Opinion in Hematology, 19(3), 192–198. https://doi.org/10.1097/MOH.0b013e3283523ebc.

    Article  PubMed  Google Scholar 

  20. Koh, W., Mahan, R. D., & Davis, G. E. (2008). Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. Journal of Cell Science, 121(Pt 7), 989–1001. https://doi.org/10.1242/jcs.020693.

    Article  PubMed  CAS  Google Scholar 

  21. Menezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The extracellular matrix protein laminin a2 regulates the maturation and function of the blood-brain barrier. The Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014.

    Article  PubMed  CAS  Google Scholar 

  22. Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M., Hellstrom, M., Backstrom, G., Fredriksson, S., Landegren, U., Nystrom, H. C., Bergstrom, G., Dejana, E., Ostman, A., Lindahl, P., & Betsholtz, C. (2003). Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes & Development, 17(15), 1835–1840. https://doi.org/10.1101/gad.266803.

    Article  CAS  Google Scholar 

  23. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-b in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126(14), 3047–3055 PM:10375497.

    PubMed  CAS  Google Scholar 

  24. Hirschi, K. K., Rohovsky, S. A., Beck, L. H., Smith, S. R., & D'Amore, P. A. (1999). Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circulation Research, 84(3), 298–305. https://doi.org/10.1161/01.RES.84.3.298.

    Article  PubMed  CAS  Google Scholar 

  25. Leveen, P., Pekny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., & Betsholtz, C. (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes & Development, 8(16), 1875–1887. https://doi.org/10.1101/gad.8.16.1875.

    Article  CAS  Google Scholar 

  26. Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cécillion, M., Maréchal, E., Maciazek, J., Vayssière, C., Cruaud, C., Cabanis, E. A., Ruchoux, M. M., Weissenbach, J., Bach, J. F., Bousser, M. G., & Tournier-Lasserve, E. (1996). Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383(6602), 707–710. https://doi.org/10.1038/383707a0.

    Article  PubMed  CAS  Google Scholar 

  27. Domenga, V., Fardoux, P., Lacombe, P., Monet, M., Maciazek, J., Krebs, L. T., Klonjkowski, B., Berrou, E., Mericskay, M., Li, Z., Tournier-Lasserve, E., Gridley, T., & Joutel, A. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes & Development, 18(22), 2730–2735. https://doi.org/10.1101/gad.308904.

    Article  CAS  Google Scholar 

  28. **, S., Hansson, E. M., Tikka, S., Lanner, F., Sahlgren, C., Farnebo, F., Baumann, M., Kalimo, H., & Lendahl, U. (2008). Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circulation Research, 102(12), 1483–1491. https://doi.org/10.1161/CIRCRESAHA.107.167965.

    Article  PubMed  CAS  Google Scholar 

  29. Fleming, I. (2014). The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacological Reviews, 66(4), 1106–1140. https://doi.org/10.1124/pr.113.007781.

    Article  PubMed  CAS  Google Scholar 

  30. Fer, M., Dreano, Y., Lucas, D., Corcos, L., Salaun, J. P., Berthou, F., et al. (2008). Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Archives of Biochemistry and Biophysics, 471(2), 116–125. https://doi.org/10.1016/j.abb.2008.01.002.

    Article  PubMed  CAS  Google Scholar 

  31. Arnold, C., Konkel, A., Fischer, R., & Schunck, W. H. (2010). Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacological Reports, 62(3), 536–547. https://doi.org/10.1016/S1734-1140(10)70311-X.

    Article  PubMed  CAS  Google Scholar 

  32. Morisseau, C., & Hammock, B. D. (2005). Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annual Review of Pharmacology and Toxicology, 45, 311–333. https://doi.org/10.1146/annurev.pharmtox.45.120403.095920.

    Article  PubMed  CAS  Google Scholar 

  33. Newman, J. W., Morisseau, C., & Hammock, B. D. (2005). Epoxide hydrolases: their roles and interactions with lipid metabolism. Progress in Lipid Research, 44(1), 1–51. https://doi.org/10.1016/j.plipres.2004.10.001.

    Article  PubMed  CAS  Google Scholar 

  34. Newman, J. W., Watanabe, T., & Hammock, B. D. (2002). The simultaneous quantification of cytochrome P450 dependent linoleate and arachidonate metabolites in urine by HPLC-MS/MS. Journal of Lipid Research, 43(9), 1563–1578. https://doi.org/10.1194/jlr.D200018-JLR200.

    Article  PubMed  CAS  Google Scholar 

  35. Morisseau, C., Inceoglu, B., Schmelzer, K., Tsai, H. J., **ks, S. L., Hegedus, C. M., & Hammock, B. D. (2010). Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. Journal of Lipid Research, 51(12), 3481–3490. https://doi.org/10.1194/jlr.M006007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F., & Arand, M. (2003). The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1552–1557. https://doi.org/10.1073/pnas.0437829100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1558–1563. https://doi.org/10.1073/pnas.0437724100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Morisseau, C., Schebb, N. H., Dong, H., Ulu, A., Aronov, P. A., & Hammock, B. D. (2012). Role of soluble epoxide hydrolase phosphatase activity in the metabolism of lysophosphatidic acids. Biochemical and Biophysical Research Communications, 419(4), 796–800. https://doi.org/10.1016/j.bbrc.2012.02.108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Oguro, A., & Imaoka, S. (2012). Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase. Journal of Lipid Research, 53(3), 505–512. https://doi.org/10.1194/jlr.M022319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Oguro, A., Sakamoto, K., Suzuki, S., & Imaoka, S. (2009). Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth. Biological & Pharmaceutical Bulletin, 32(12), 1962–1967. https://doi.org/10.1248/bpb.32.1962.

    Article  CAS  Google Scholar 

  41. Hou, H. H., Hammock, B. D., Su, K. H., Morisseau, C., Kou, Y. R., Imaoka, S., Oguro, A., Shyue, S. K., Zhao, J. F., & Lee, T. S. (2012). N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovascular Research, 93(1), 120–129. https://doi.org/10.1093/cvr/cvr267.

    Article  PubMed  CAS  Google Scholar 

  42. Hou, H. H., Liao, Y. J., Hsiao, S. H., Shyue, S. K., & Lee, T. S. (2015). Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase. Scientific Reports, 5, 13524. https://doi.org/10.1038/srep13524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Michaelis, U. R., & Fleming, I. (2006). From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacology & Therapeutics, 111(3), 584–595. https://doi.org/10.1016/j.pharmthera.2005.11.003.

    Article  CAS  Google Scholar 

  44. Munzenmaier, D. H., & Harder, D. R. (2000). Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. American Journal of Physiology. Heart and Circulatory Physiology, 278(4), H1163–H1167. https://doi.org/10.1152/ajpheart.2000.278.4.H1163.

    Article  PubMed  CAS  Google Scholar 

  45. Fleming, I., Fisslthaler, B., Michaelis, U. R., Kiss, L., Popp, R., & Busse, R. (2001). The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflügers Archiv, 442(4), 511–518. https://doi.org/10.1007/s004240100565.

    Article  PubMed  CAS  Google Scholar 

  46. Chen, J. K., Capdevila, J., & Harris, R. C. (2000). Overexpression of C-terminal src kinase blocks 14, 15- epoxyeicosatrienoic acid-induced tyrosine phosphorylation and mitogenesis. The Journal of Biological Chemistry, 275(18), 13789–13792. https://doi.org/10.1074/jbc.275.18.13789.

    Article  PubMed  CAS  Google Scholar 

  47. Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). The FASEB Journal, 17(6), 770–772. https://doi.org/10.1096/fj.02-0640fje.

    Article  PubMed  CAS  Google Scholar 

  48. Pozzi, A., Popescu, V., Yang, S., Mei, S., Shi, M., Puolitaival, S. M., Caprioli, R. M., & Capdevila, J. H. (2010). The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. The Journal of Biological Chemistry, 285(17), 12840–12850. https://doi.org/10.1074/jbc.M109.081554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., Fisslthaler, B., & Fleming, I. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. Cell Physiology, 295(5), C1292–C1301. https://doi.org/10.1152/ajpcell.00230.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489(1–2), 82–91. https://doi.org/10.1016/j.abb.2009.05.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111(12), 5581–5591. https://doi.org/10.1182/blood-2007-11-126680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Suzuki, S., Oguro, A., Osada-Oka, M., Funae, Y., & Imaoka, S. (2008). Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. Journal of Pharmacological Sciences, 108(1), 79–88. https://doi.org/10.1254/jphs.08122FP.

    Article  PubMed  CAS  Google Scholar 

  53. Cui, P. H., Petrovic, N., & Murray, M. (2011). The omega-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation. British Journal of Pharmacology, 162(5), 1143–1155. https://doi.org/10.1111/j.1476-5381.2010.01113.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang, G., Panigrahy, D., Mahakian, L. M., Yang, J., Liu, J. Y., Stephen Lee, K. S., Wettersten, H. I., Ulu, A., Hu, X., Tam, S., Hwang, S. H., Ingham, E. S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2013). Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6530–6535. https://doi.org/10.1073/pnas.1304321110.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., & Alitalo, K. (1996). A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. The EMBO Journal, 15(2), 290–298 PM:8617204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shao, Z., Fu, Z., Stahl, A., Joyal, J. S., Hatton, C., Juan, A., Hurst, C., Evans, L., Cui, Z., Pei, D., Gong, Y., Xu, D., Tian, K., Bogardus, H., Edin, M. L., Lih, F., Sapieha, P., Chen, J., Panigrahy, D., Hellstrom, A., Zeldin, D. C., & Smith, L. E. H. (2014). Cytochrome P450 2C8 omega3-long-chain polyunsaturated fatty acid metabolites increase mouse retinal pathologic neovascularization—brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 581–586. https://doi.org/10.1161/ATVBAHA.113.302927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gong, Y., Fu, Z., Edin, M. L., Liu, C. H., Wang, Z., Shao, Z., et al. (2016). Cytochrome P450 oxidase 2C inhibition adds to omega-3 long-chain polyunsaturated fatty acids protection against retinal and choroidal neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(9), 1919–1927. https://doi.org/10.1161/ATVBAHA.116.307558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hu, J., Popp, R., Fromel, T., Ehling, M., Awwad, K., Adams, R. H., et al. (2014). Muller glia cells regulate notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. The Journal of Experimental Medicine, 211(2), 281–295. https://doi.org/10.1084/jem.20131494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Izumi, N., Helker, C., Ehling, M., Behrens, A., Herzog, W., & Adams, R. H. (2012). Fbxw7 controls angiogenesis by regulating endothelial Notch activity. PLoS One, 7(7), e41116. https://doi.org/10.1371/journal.pone.0041116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sun, J., Sui, X., Bradbury, J. A., Zeldin, D. C., Conte, M. S., & Liao, J. K. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circulation Research, 90(9), 1020–1027. https://doi.org/10.1161/01.RES.0000017727.35930.33.

    Article  PubMed  CAS  Google Scholar 

  61. Feng, W., Xu, X., Zhao, G., Li, G., Liu, T., Zhao, J., et al. (2013). EETs and CYP2J2 inhibit TNF-alpha-induced apoptosis in pulmonary artery endothelial cells and TGF-b1-induced migration in pulmonary artery smooth muscle cells. International Journal of Molecular Medicine, 32(3), 685–693. https://doi.org/10.3892/ijmm.2013.1435.

    Article  PubMed  CAS  Google Scholar 

  62. Neeli, I., Liu, Z., Dronadula, N., Ma, Z. A., & Rao, G. N. (2004). An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in platelet-derived growth factor BB-induced vascular smooth muscle cell motility. The Journal of Biological Chemistry, 279(44), 46122–46128. https://doi.org/10.1074/jbc.M406922200.

    Article  PubMed  CAS  Google Scholar 

  63. Dethlefsen, S. M., Shepro, D., & D'Amore, P. A. (1994). Arachidonic acid metabolites in bFGF-, PDGF-, and serum-stimulated vascular cell growth. Experimental Cell Research, 212(2), 262–273. https://doi.org/10.1006/excr.1994.1142.

    Article  PubMed  CAS  Google Scholar 

  64. Hayama, M., Inoue, R., Akiba, S., & Sato, T. (2002). ERK and p38 MAP kinase are involved in arachidonic acid release induced by H2O2 and PDGF in mesangial cells. American Journal of Physiology. Renal Physiology, 282(3), F485–F491. https://doi.org/10.1152/ajprenal.00210.2001.

    Article  PubMed  CAS  Google Scholar 

  65. Nakao, S., Ogata, Y., Yamamoto, Y., Furuyama, S., & Sugiya, H. (2004). Platelet-derived growth factor-induced arachidonic acid release for enhancement of prostaglandin E(2) synthesis in human gingival fibroblasts pretreated with interleukin-1beta. Journal of Cellular Biochemistry, 92(3), 579–590. https://doi.org/10.1002/jcb.20086.

    Article  PubMed  CAS  Google Scholar 

  66. Kim, H. S., Kim, S. K., & Kang, K. W. (2017). Differential effects of sEH inhibitors on the proliferation and migration of vascular smooth muscle cells. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122683.

  67. Hu, J., Dziumbla, S., Lin, J., Bibli, S. I., Zukunft, S., de, M. J., et al. (2017). Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature, 552(7684), 248–252. https://doi.org/10.1038/nature25013.

    Article  PubMed  CAS  Google Scholar 

  68. Kerbel, R., & Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews. Cancer, 2(10), 727–739. https://doi.org/10.1038/nrc905.

    Article  PubMed  CAS  Google Scholar 

  69. Jain, R. K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307(5706), 58–62. https://doi.org/10.1126/science.1104819.

    Article  PubMed  CAS  Google Scholar 

  70. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3(6), 401–410. https://doi.org/10.1038/nrc1093.

    Article  PubMed  CAS  Google Scholar 

  71. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659. https://doi.org/10.1056/NEJM198612253152606.

    Article  PubMed  CAS  Google Scholar 

  72. Mazzone, M., Dettori, D., de Oliveira, R. L., Loges, S., Schmidt, T., Jonckx, B., et al. (2009). Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell, 136(5), 839–851. https://doi.org/10.1016/j.cell.2009.01.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Padera, T. P., Stoll, B. R., Tooredman, J. B., Capen, D., di Tomaso, E., & Jain, R. K. (2004). Pathology: cancer cells compress intratumour vessels. Nature, 427(6976), 695. https://doi.org/10.1038/427695a.

    Article  PubMed  CAS  Google Scholar 

  74. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R. K., & McDonald, D. M. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American Journal of Pathology, 160(3), 985–1000. https://doi.org/10.1016/S0002-9440(10)64920-6.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huang, Y., Goel, S., Duda, D. G., Fukumura, D., & Jain, R. K. (2013). Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Research, 73(10), 2943–2948. https://doi.org/10.1158/0008-5472.CAN-12-4354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bottos, A., Martini, M., Di, N. F., Comunanza, V., Maione, F., Minassi, A., et al. (2012). Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 109(6), E353–E359. https://doi.org/10.1073/pnas.1105026109.

    Article  PubMed  Google Scholar 

  77. Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15(3), 232–239. https://doi.org/10.1016/j.ccr.2009.01.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15(3), 220–231. https://doi.org/10.1016/j.ccr.2009.01.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., Ning, Y. G., **ao, X., Zeldin, D. C., & Wang, D. W. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65(11), 4707–4715. https://doi.org/10.1158/0008-5472.CAN-04-4173.

    Article  PubMed  CAS  Google Scholar 

  80. El Sadeck, N., Ibrahim, B. M., & Alassal, M. A. (2014). Cytochrome P450-isoenzyme 1A1 in susceptibility to tobacco-related lung cancer. Asian Cardiovascular & Thoracic Annals, 22(3), 315–318. https://doi.org/10.1177/0218492313492987.

    Article  Google Scholar 

  81. Murray, G. I., Patimalla, S., Stewart, K. N., Miller, I. D., & Heys, S. D. (2010). Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 57(2), 202–211. https://doi.org/10.1111/j.1365-2559.2010.03606.x.

    Article  PubMed  Google Scholar 

  82. Guengerich, F. P., & Turvy, C. G. (1991). Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. The Journal of Pharmacology and Experimental Therapeutics, 256(3), 1189–1194 PM:2005581.

    PubMed  CAS  Google Scholar 

  83. Panigrahy, D., Greene, E. R., Pozzi, A., Wang, D. W., & Zeldin, D. C. (2011). EET signaling in cancer. Cancer Metastasis Reviews, 30(3–4), 525–540. https://doi.org/10.1007/s10555-011-9315-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. El-Serafi, I., Fares, M., Abedi-Valugerdi, M., Afsharian, P., Moshfegh, A., Terelius, Y., et al. (2015). Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies. The Pharmacogenomics Journal, 15(5), 405–413. https://doi.org/10.1038/tpj.2014.82.

    Article  PubMed  CAS  Google Scholar 

  85. Karkhanis, A., Hong, Y., & Chan, E. C. Y. (2017). Inhibition and inactivation of human CYP2J2: Implications in cardiac pathophysiology and opportunities in cancer therapy. Biochemical Pharmacology, 135, 12–21. https://doi.org/10.1016/j.bcp.2017.02.017.

    Article  PubMed  CAS  Google Scholar 

  86. Narjoz, C., Favre, A., McMullen, J., Kiehl, P., Montemurro, M., Figg, W. D., Beaune, P., de Waziers, I., & Rochat, B. (2014). Important role of CYP2J2 in protein kinase inhibitor degradation: a possible role in intratumor drug disposition and resistance. PLoS One, 9(5), e95532. https://doi.org/10.1371/journal.pone.0095532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jordan, V. C., & Brodie, A. M. (2007). Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids, 72(1), 7–25. https://doi.org/10.1016/j.steroids.2006.10.009.

    Article  PubMed  CAS  Google Scholar 

  88. Bruno, R. D., & Njar, V. C. (2007). Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorganic & Medicinal Chemistry, 15(15), 5047–5060. https://doi.org/10.1016/j.bmc.2007.05.046.

    Article  CAS  Google Scholar 

  89. Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Reviews, 29(4), 723–735. https://doi.org/10.1007/s10555-010-9264-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nishida, C. R., Lee, M., & de Montellano, P. R. (2010). Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Molecular Pharmacology, 78(3), 497–502. https://doi.org/10.1124/mol.110.065045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li, M., Li, C., Liu, W. X., Liu, C., Cui, J., Li, Q., Ni, H., Yang, Y., Wu, C., Chen, C., Zhen, X., Zeng, T., Zhao, M., Chen, L., Wu, J., Zeng, R., & Chen, L. (2017). Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. Journal of Molecular Cell Biology, 9(6), 489–503. https://doi.org/10.1093/jmcb/mjx021.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Skrypnyk, N., Chen, X., Hu, W., Su, Y., Mont, S., Yang, S., Gangadhariah, M., Wei, S., Falck, J. R., Jat, J. L., Zent, R., Capdevila, J. H., & Pozzi, A. (2014). PPARalpha activation can help prevent and treat non-small cell lung cancer. Cancer Research, 74(2), 621–631. https://doi.org/10.1158/0008-5472.CAN-13-1928.

    Article  PubMed  CAS  Google Scholar 

  93. Keseru, B., Barbosa-Sicard, E., Schermuly, R. T., Tanaka, H., Hammock, B. D., Weissmann, N., et al. (2010). Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovascular Research, 85(1), 232–240. https://doi.org/10.1093/cvr/cvp281.

    Article  PubMed  CAS  Google Scholar 

  94. Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37(3–4), 133–141. https://doi.org/10.1007/s10735-006-9050-9.

    Article  PubMed  CAS  Google Scholar 

  95. Molina, A. M., Hutson, T. E., Nosov, D., Tomczak, P., Lipatov, O., Sternberg, C. N., Motzer, R., & Eisen, T. (2018). Efficacy of tivozanib treatment after sorafenib in patients with advanced renal cell carcinoma: crossover of a phase 3 study. European Journal of Cancer, 94, 87–94. https://doi.org/10.1016/j.ejca.2018.02.009.

    Article  PubMed  CAS  Google Scholar 

  96. Zimmermann, K., Schmittel, A., Steiner, U., Asemissen, A. M., Knoedler, M., Thiel, E., Miller, K., & Keilholz, U. (2009). Sunitinib treatment for patients with advanced clear-cell renal-cell carcinoma after progression on sorafenib. Oncology, 76(5), 350–354. https://doi.org/10.1159/000209961.

    Article  PubMed  CAS  Google Scholar 

  97. Liu, J. Y., Park, S. H., Morisseau, C., Hwang, S. H., Hammock, B. D., & Weiss, R. H. (2009). Sorafenib has soluble epoxide hydrolase inhibitory activity, which contributes to its effect profile in vivo. Molecular Cancer Therapeutics, 8(8), 2193–2203. https://doi.org/10.1158/1535-7163.MCT-09-0119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hwang, S. H., Wecksler, A. T., Zhang, G., Morisseau, C., Nguyen, L. V., Fu, S. H., & Hammock, B. D. (2013). Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(13), 3732–3737. https://doi.org/10.1016/j.bmcl.2013.05.011.

    Article  CAS  Google Scholar 

  99. Liao, J., Hwang, S. H., Li, H., Yang, Y., Yang, J., Wecksler, A. T., Liu, J. Y., Hammock, B. D., & Yang, G. Y. (2016). Inhibition of mutant KrasG12D-initiated murine pancreatic carcinoma growth by a dual c-Raf and soluble epoxide hydrolase inhibitor t-CUPM. Cancer Letters, 371(2), 187–193. https://doi.org/10.1016/j.canlet.2015.11.042.

    Article  PubMed  CAS  Google Scholar 

  100. Wang, W., Zhu, J., Lyu, F., Panigrahy, D., Ferrara, K. W., Hammock, B., et al. (2014). Omega-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins & Other Lipid Mediators, 113-115, 13–20. https://doi.org/10.1016/j.prostaglandins.2014.07.002.

    Article  CAS  Google Scholar 

  101. Nithipatikom, K., Brody, D. M., Tang, A. T., Manthati, V. L., Falck, J. R., Williams, C. L., & Campbell, W. B. (2010). Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. Cancer Science, 101(12), 2629–2636. https://doi.org/10.1111/j.1349-7006.2010.01713.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wei, X., Zhang, D., Dou, X., Niu, N., Huang, W., Bai, J., & Zhang, G. (2014). Elevated 14,15- epoxyeicosatrienoic acid by increasing of cytochrome P450 2C8, 2C9 and 2J2 and decreasing of soluble epoxide hydrolase associated with aggressiveness of human breast cancer. BMC Cancer, 14(1), 841. https://doi.org/10.1186/1471-2407-14-841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., Zhou, J., Elbekai, R. H., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics, 329(3), 908–918. https://doi.org/10.1124/jpet.109.152017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnés, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Yang, J., Schwendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D’Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122(1), 178–191. https://doi.org/10.1172/JCI58128.

    Article  PubMed  CAS  Google Scholar 

  105. Luo, J., Feng, X. X., Luo, C., Wang, Y., Li, D., Shu, Y., Wang, S. S., Qin, J., Li, Y. C., Zou, J. M., Tian, D. A., Zhang, G. M., & Feng, Z. H. (2016). 14,15-EET induces the infiltration and tumor-promoting function of neutrophils to trigger the growth of minimal dormant metastases. Oncotarget, 7(28), 43324–43336. https://doi.org/10.18632/oncotarget.9709.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Luo, J., Yao, J. F., Deng, X. F., Zheng, X. D., Jia, M., Wang, Y. Q., Huang, Y., & Zhu, J. H. (2018). 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin avb3 and activating FAK/PI3K/AKT signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 23. https://doi.org/10.1186/s13046-018-0694-6.

    Article  Google Scholar 

  107. Li, J., Liu, H., **ng, B., Yu, Y., Wang, H., Chen, G., Gu, B., Zhang, G., Wei, D., Gu, P., Li, M., & Hu, W. (2012). t-AUCB, an improved sEH inhibitor, suppresses human glioblastoma cell growth by activating NF-kB-p65. Journal of Neuro-Oncology, 108(3), 385–393. https://doi.org/10.1007/s11060-012-0841-4.

    Article  PubMed  CAS  Google Scholar 

  108. De Palma, M., Venneri, M. A., Galli, R., Sergi, S. L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226. https://doi.org/10.1016/j.ccr.2005.08.002.

    Article  PubMed  CAS  Google Scholar 

  109. Abdel, M. R., Zippel, N., Fromel, T., Heidler, J., Zukunft, S., Walzog, B., et al. (2017). AMP-activated protein kinase alpha2 in neutrophils regulates vascular repair via hypoxia-inducible factor-1alpha and a network of proteins affecting metabolism and apoptosis. Circulation Research, 120(1), 99–109. https://doi.org/10.1161/CIRCRESAHA.116.309937.

    Article  CAS  Google Scholar 

  110. Nowak, G., Karrar, A., Holmen, C., Nava, S., Uzunel, M., Hultenby, K., et al. (2004). Expression of vascular endothelial growth factor receptor-2 or Tie-2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization. Circulation, 110(24), 3699–3707. https://doi.org/10.1161/01.CIR.0000143626.16576.51.

    Article  PubMed  CAS  Google Scholar 

  111. Rand, A. A., Barnych, B., Morisseau, C., Cajka, T., Lee, K. S. S., Panigrahy, D., & Hammock, B. D. (2017). Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proceedings of the National Academy of Sciences of the United States of America, 114(17), 4370–4375. https://doi.org/10.1073/pnas.1616893114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zhang, G., Panigrahy, D., Hwang, S. H., Yang, J., Mahakian, L. M., Wettersten, H. I., Liu, J. Y., Wang, Y., Ingham, E. S., Tam, S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2014). Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11127–11132. https://doi.org/10.1073/pnas.1410432111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. The Journal of Biological Chemistry, 277(11), 8755–8758. https://doi.org/10.1074/jbc.R100062200.

    Article  PubMed  CAS  Google Scholar 

  114. Arnold, C., Markovic, M., Blossey, K., Wallukat, G., Fischer, R., Dechend, R., Konkel, A., von Schacky, C., Luft, F. C., Muller, D. N., Rothe, M., & Schunck, W. H. (2010). Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of w-3 fatty acids. The Journal of Biological Chemistry, 285(43), 32720–32733. https://doi.org/10.1074/jbc.M110.118406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shearer, G. C., Harris, W. S., Pedersen, T. L., & Newman, J. W. (2010). Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. Journal of Lipid Research, 51(8), 2074–2081. https://doi.org/10.1194/M900193-JLR200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhang, G., Kodani, S., & Hammock, B. D. (2014). Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Progress in Lipid Research, 53, 108–123. https://doi.org/10.1016/j.plipres.2013.11.003.

    Article  PubMed  CAS  Google Scholar 

  117. Heinze, V. M., & Actis, A. B. (2012). Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review. International Journal of Food Sciences and Nutrition, 63(1), 66–78. https://doi.org/10.3109/09637486.2011.598849.

    Article  PubMed  CAS  Google Scholar 

  118. Hou, R., Yao, S. S., Liu, J., Wang, L. L., Wu, L., & Jiang, L. (2017). Dietary n-3 polyunsaturated fatty acids, fish consumption, and endometrial cancer risk: a meta-analysis of epidemiological studies. Oncotarget, 8(53), 91684–91693. https://doi.org/10.18632/oncotarget.18295.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Moloudizargari, M., Mortaz, E., Asghari, M. H., Adcock, I. M., Redegeld, F. A., & Garssen, J. (2018). Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review. Oncotarget, 9(14), 11858–11875. https://doi.org/10.18632/oncotarget.24405.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Newell, M., Baker, K., Postovit, L. M., & Field, C. J. (2017). A critical review on the effect of docosahexaenoic acid (DHA) on cancer cell cycle progression. International Journal of Molecular Sciences, 18(8). https://doi.org/10.3390/ijms18081784.

  121. De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews. Cancer, 17(8), 457–474. https://doi.org/10.1038/nrc.2017.51.

    Article  PubMed  CAS  Google Scholar 

  122. Fromel, T., Kohlstedt, K., Popp, R., Yin, X., Awwad, K., Barbosa-Sicard, E., et al. (2013). Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques. Basic Research in Cardiology, 108(1), 319. https://doi.org/10.1007/s00395-012-0319-8.

    Article  PubMed  CAS  Google Scholar 

  123. Nandi, P., Girish, G. V., Majumder, M., **n, X., Tutunea-Fatan, E., & Lala, P. K. (2017). PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer, 17(1), 11. https://doi.org/10.1186/s12885-016-3018-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Chen, X. W., Yu, T. J., Zhang, J., Li, Y., Chen, H. L., Yang, G. F., Yu, W., Liu, Y. Z., Liu, X. X., Duan, C. F., Tang, H. L., Qiu, M., Wang, C. L., Zheng, H., Yue, J., Guo, A. M., & Yang, J. (2017). CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene, 36(35), 5045–5057. https://doi.org/10.1038/onc.2017.118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Else Kröner-Fresenius-Stiftung (Else Kröner-Fresenius-Graduiertenkolleg) and the Deutsche Forschungsgemeinschaft (SFB 1039/A06 and Exzellenzcluster 147 “Cardio-Pulmonary Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fleming.

Additional information

Special issue on Bioactive Lipids, Guest Editor: Dipak Panigrahy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Frömel, T. & Fleming, I. Angiogenesis and vascular stability in eicosanoids and cancer. Cancer Metastasis Rev 37, 425–438 (2018). https://doi.org/10.1007/s10555-018-9732-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9732-2

Keywords

Navigation