Log in

Advances in decoding breast cancer brain metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The past decade has witnessed impressive advances in cancer treatment ushered in by targeted and immunotherapies. However, with significantly prolonged survival, upon recurrence, more patients become inflicted by brain metastasis, which is mostly refractory to all currently available therapeutic regimens. Historically, brain metastasis is an understudied area in cancer research, partly due to the dearth of appropriate experimental models that closely simulate the special biological features of metastasis in the unique brain environment and to the sophistication of techniques required to perform in-depth studies of the extremely complex and challenging brain metastasis. Yet, with increasing clinical demand for more effective treatment options, brain metastasis research has rapidly advanced in recent years. The present review spotlights the recent major progresses in basic and translational studies of brain metastasis with focuses on new animal models, novel imaging technologies, omics “big data” resources, and some new and exciting biological insights on brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gavrilovic, I. T., & Posner, J. B. (2005). Brain metastases: epidemiology and pathophysiology. Journal of Neuro-Oncology, 75(1), 5–14.

    Article  PubMed  Google Scholar 

  2. Patchell, R. A. (2003). The management of brain metastases. Cancer Treatment Reviews, 29(6), 533–540.

    Article  PubMed  Google Scholar 

  3. Barnholtz-Sloan, J. S., Sloan, A. E., Davis, F. G., Vigneau, F. D., Lai, P., & Sawaya, R. E. (2004). Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology, 22(14), 2865–2872.

    Article  PubMed  Google Scholar 

  4. Schouten, L. J., Rutten, J., Huveneers, H. A., & Twijnstra, A. (2002). Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer, 94(10), 2698–2705.

    Article  PubMed  Google Scholar 

  5. Perin, T., Canzonieri, V., Memeo, L., & Massarut, S. (2011). Breast metastasis of primary colon cancer with micrometastasis in the axillary sentinel node: a metastasis that metastasized? Diagnostic Pathology, 6, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janssen, S., Dahlke, M., Trang, N. T., Khoa, M. T., & Rades, D. (2015). Estimation of the six-month survival probability after radiosurgery for brain metastases from kidney cancer. Anticancer Research, 35(7), 4215–4217.

    PubMed  Google Scholar 

  7. Chua, C., Raaj, J., Pan, S., Farid, M., Lee, J. F., Ho, Z. C., et al. (2016). Brain metastasis in sarcoma: does metastasectomy or aggressive multi-disciplinary treatment improve survival outcomes. Asia-Pacific Journal of Clinical Oncology, 12(1), e16–e22.

    Article  PubMed  Google Scholar 

  8. Lemke, J., Barth, T. F., Juchems, M., Kapapa, T., Henne-Bruns, D., & Kornmann, M. (2011). Long-term survival following resection of brain metastases from pancreatic cancer. Anticancer Research, 31(12), 4599–4603.

    PubMed  Google Scholar 

  9. Bendell, J. C., Domchek, S. M., Burstein, H. J., Harris, L., Younger, J., Kuter, I., et al. (2003). Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer, 97(12), 2972–2977.

    Article  PubMed  Google Scholar 

  10. Clayton, A. J., Danson, S., Jolly, S., Ryder, W. D., Burt, P. A., Stewart, A. L., et al. (2004). Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. British Journal of Cancer, 91(4), 639–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong, W., Jarvis, C., & Mackillop, W. J. (2015). Estimating the need for palliative radiotherapy for brain metastasis: a benchmarking approach. Clinical Oncology (Royal College of Radiologists), 27(2), 83–91.

    Article  CAS  Google Scholar 

  12. Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., & Goncalves, A. (2012). Recent trends in epidemiology of brain metastases: an overview. Anticancer Research, 32(11), 4655–4662.

    PubMed  Google Scholar 

  13. Smedby, K. E., Brandt, L., Backlund, M. L., & Blomqvist, P. (2009). Brain metastases admissions in Sweden between 1987 and 2006. British Journal of Cancer, 101(11), 1919–1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steeg, P. S., Camphausen, K. A., & Smith, Q. R. (2011). Brain metastases as preventive and therapeutic targets. Nature Reviews. Cancer, 11(5), 352–363.

    Article  CAS  PubMed  Google Scholar 

  15. Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews. Clinical Oncology, 8(6), 344–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, C., & Yu, D. (2011). Microenvironment determinants of brain metastasis. Cell & Bioscience, 1(1), 8.

    Article  Google Scholar 

  17. Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.

    Article  CAS  PubMed  Google Scholar 

  18. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.

    Article  CAS  PubMed  Google Scholar 

  19. Daphu, I., Sundstrom, T., Horn, S., Huszthy, P. C., Niclou, S. P., Sakariassen, P. O., et al. (2013). In vivo animal models for studying brain metastasis: value and limitations. Clinical & Experimental Metastasis, 30(5), 695–710.

  20. Wu, Y. J., Muldoon, L. L., Gahramanov, S., Kraemer, D. F., Marshall, D. J., & Neuwelt, E. A. (2012). Targeting alphaV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. Journal of Neuro-Oncology, 110(1), 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., et al. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271–3277.

    Article  PubMed  Google Scholar 

  22. Debeb, B. G., Lacerda, L., Anfossi, S., Diagaradjane, P., Chu, K., Bambhroliya, A., et al. (2016). miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst, 108(8).

  23. Ni, J., Ramkissoon, S. H., **e, S., Goel, S., Stover, D. G., Guo, H., et al. (2016). Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 22(7), 723–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., et al. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. The Lancet Oncology, 17(7), 976–983.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y., Zhang, N., Hoffman, R. M., & Zhao, M. (2015). Surgically-induced multi-organ metastasis in an orthotopic syngeneic imageable model of 4T1 murine breast cancer. Anticancer Research, 35(9), 4641–4646.

    PubMed  Google Scholar 

  26. Erin, N., Kale, S., Tanriover, G., Koksoy, S., Duymus, O., & Korcum, A. F. (2013). Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Research and Treatment, 139(3), 677–689.

    Article  CAS  PubMed  Google Scholar 

  27. Barajas Jr., R. F., & Cha, S. (2012). Imaging diagnosis of brain metastasis. Progress in Neurological Surgery, 25, 55–73.

    Article  PubMed  Google Scholar 

  28. Waerzeggers, Y., Rahbar, K., Riemann, B., Weckesser, M., Schafers, M., Hesselmann, V., et al. (2010). PET in the diagnosis and management of patients with brain metastasis: current role and future perspectives. Cancer Biomarkers, 7(4), 219–233.

    PubMed  Google Scholar 

  29. Kienast, Y., von Baumgarten, L., Fuhrmann, M., Klinkert, W. E., Goldbrunner, R., Herms, J., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.

    Article  CAS  PubMed  Google Scholar 

  30. Murrell, D. H., Zarghami, N., Jensen, M. D., Chambers, A. F., Wong, E., & Foster, P. J. (2016). Evaluating changes to blood-brain barrier integrity in brain metastasis over time and after radiation treatment. Translational Oncology, 9(3), 219–227.

    Article  PubMed  PubMed Central  Google Scholar 

  31. O'Brien, E. R., Kersemans, V., Tredwell, M., Checa, B., Serres, S., Soto, M. S., et al. (2014). Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. Journal of Nuclear Medicine, 55(2), 275–280.

    Article  PubMed  Google Scholar 

  32. Poli, G. L., Bianchi, C., Virotta, G., Bettini, A., Moretti, R., Trachsel, E., et al. (2013). Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunology Research, 1(2), 134–143.

    Article  CAS  PubMed  Google Scholar 

  33. Sarmiento, M. (2013). Use of confocal microscopy in the study of microglia in a brain metastasis model. Methods in Molecular Biology, 1041, 337–346.

    Article  PubMed  Google Scholar 

  34. Saha, D., Dunn, H., Zhou, H., Harada, H., Hiraoka, M., Mason, R. P., et al. (2011). In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. Journal of Visualized Experiments, 56.

  35. Guldner, I. H., Yang, L., Cowdrick, K. R., Wang, Q., Alvarez Barrios, W. V., Zellmer, V. R., et al. (2016). An integrative platform for three-dimensional quantitative analysis of spatially heterogeneous metastasis landscapes. Scientific Reports, 6, 24201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. Y., Park, K., Lim, S. H., Kim, H. S., Yoo, K. H., Jung, K. S., et al. (2015). Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget, 6(41), 43731–43742.

    PubMed  PubMed Central  Google Scholar 

  38. Lee, H. W., Seol, H. J., Choi, Y. L., Ju, H. J., Joo, K. M., Ko, Y. H., et al. (2012). Genomic copy number alterations associated with the early brain metastasis of non-small cell lung cancer. International Journal of Oncology, 41(6), 2013–2020.

    CAS  PubMed  Google Scholar 

  39. Li, F., Sun, L., & Zhang, S. (2015). Acquirement of DNA copy number variations in non-small cell lung cancer metastasis to the brain. Oncology Reports, 34(4), 1701–1707.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Marzese, D. M., Witz, I. P., Kelly, D. F., & Hoon, D. S. (2015). Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics, 7(8), 1303–1311.

    Article  CAS  PubMed  Google Scholar 

  41. Marzese, D. M., Scolyer, R. A., Huynh, J. L., Huang, S. K., Hirose, H., Chong, K. K., et al. (2014). Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Human Molecular Genetics, 23(1), 226–238.

    Article  CAS  PubMed  Google Scholar 

  42. Salhia, B., Kiefer, J., Ross, J. T., Metapally, R., Martinez, R. A., Johnson, K. N., et al. (2014). Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PloS One, 9(1), e85448.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Park, E. S., Kim, S. J., Kim, S. W., Yoon, S. L., Leem, S. H., Kim, S. B., et al. (2011). Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17456–17461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Camacho, L., Guerrero, P., & Marchetti, D. (2013). MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PloS One, 8(9), e73790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshida, A., Okamoto, N., Tozawa-Ono, A., Koizumi, H., Kiguchi, K., Ishizuka, B., et al. (2013). Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Human Cell, 26(2), 56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dun, M. D., Chalkley, R. J., Faulkner, S., Keene, S., Avery-Kiejda, K. A., Scott, R. J., et al. (2015). Proteotranscriptomic profiling of 231-BR breast cancer cells: identification of potential biomarkers and therapeutic targets for brain metastasis. Molecular & Cellular Proteomics, 14(9), 2316–2330.

    Article  CAS  Google Scholar 

  47. Sjobakk, T. E., Vettukattil, R., Gulati, M., Gulati, S., Lundgren, S., Gribbestad, I. S., et al. (2013). Metabolic profiles of brain metastases. International Journal of Molecular Sciences, 14(1), 2104–2118.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neagu, M. R., Gill, C. M., Batchelor, T. T., & Brastianos, P. K. (2015). Genomic profiling of brain metastases: current knowledge and new frontiers. Chinese Clinical Oncology, 4(2), 22.

    PubMed  Google Scholar 

  49. Saunus, J. M., Quinn, M. C., Patch, A. M., Pearson, J. V., Bailey, P. J., Nones, K., et al. (2015). Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. The Journal of Pathology, 237(3), 363–378.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, Q., Boire, A., **, X., Valiente, M., Er, E. E., Lopez-Soto, A., et al. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paik, P. K., Shen, R., Won, H., Rekhtman, N., Wang, L., Sima, C. S., et al. (2015). Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discovery, 5(6), 610–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brastianos, P. K., Carter, S. L., Santagata, S., Cahill, D. P., Taylor-Weiner, A., Jones, R. T., et al. (2015). Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discovery, 5(11), 1164–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, F., Glinskii, O. V., Zhou, J., Wilson, L. S., Barnes, S., Anthony, D. C., et al. (2011). Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain. PloS One, 6(7), e21977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. **ng, F., Sharma, S., Liu, Y., Mo, Y. Y., Wu, K., Zhang, Y. Y., et al. (2015). miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene, 34(37), 4890–4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahmad, A., Sethi, S., Chen, W., Ali-Fehmi, R., Mittal, S., & Sarkar, F. H. (2014). Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. American Journal of Translational Research, 6(4), 384–390.

    PubMed  PubMed Central  Google Scholar 

  57. Okuda, H., **ng, F., Pandey, P. R., Sharma, S., Watabe, M., Pai, S. K., et al. (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Research, 73(4), 1434–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hwang, S. J., Seol, H. J., Park, Y. M., Kim, K. H., Gorospe, M., Nam, D. H., et al. (2012). MicroRNA-146a suppresses metastatic activity in brain metastasis. Molecules and Cells, 34(3), 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, L., Sullivan, P. S., Goodman, J. C., Gunaratne, P. H., & Marchetti, D. (2011). MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Research, 71(3), 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Donzelli, S., Mori, F., Bellissimo, T., Sacconi, A., Casini, B., Frixa, T., et al. (2015). Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget, 6(34), 35183–35201.

    PubMed  PubMed Central  Google Scholar 

  61. Hwang, S. J., Lee, H. W., Kim, H. R., Song, H. J., Lee, D. H., Lee, H., et al. (2015). Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget, 6(24), 20434–20448.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, L. T., Xu, S. D., Xu, H., Zhang, J. F., Ning, J. F., & Wang, S. F. (2012). MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Medical Oncology, 29(3), 1673–1680.

    Article  CAS  PubMed  Google Scholar 

  63. Singh, M., Garg, N., Venugopal, C., Hallett, R., Tokar, T., McFarlane, N., et al. (2015). STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget, 6(29), 27461–27477.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hanniford, D., Zhong, J., Koetz, L., Gaziel-Sovran, A., Lackaye, D. J., Shang, S., et al. (2015). A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clinical Cancer Research, 21(21), 4903–4912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nasser, S., Ranade, A. R., Sridhar, S., Haney, L., Korn, R. L., Gotway, M. B., et al. (2011). Biomarkers associated with metastasis of lung cancer to brain predict patient survival. International Journal of Data Mining and Bioinformatics, 5(3), 287–307.

    Article  PubMed  Google Scholar 

  66. Wu, K., Sharma, S., Venkat, S., Liu, K., Zhou, X., & Watabe, K. (2016). Non-coding RNAs in cancer brain metastasis. Frontiers in Bioscience (Scholar Edition), 8, 187–202.

    Article  Google Scholar 

  67. Shen, L., Chen, L., Wang, Y., Jiang, X., **a, H., & Zhuang, Z. (2015). Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. Journal of Neuro-Oncology, 121(1), 101–108.

    Article  CAS  PubMed  Google Scholar 

  68. de Oliveira Barros, E. G., Palumbo Jr., A., Mello, P. L., de Mattos, R. M., da Silva, J. H., Pontes, B., et al. (2014). The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis. Clinical & Experimental Metastasis, 31(4), 461–474.

    Article  Google Scholar 

  69. Klein, A., Schwartz, H., Sagi-Assif, O., Meshel, T., Izraely, S., Ben Menachem, S., et al. (2015). Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. The Journal of Pathology, 236(1), 116–127.

    Article  CAS  PubMed  Google Scholar 

  70. Valiente, M., Obenauf, A. C., **, X., Chen, Q., Zhang, X. H., Lee, D. J., et al. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jia, W., Martin, T. A., Zhang, G., & Jiang, W. G. (2013). Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Research, 33(6), 2353–2359.

    PubMed  Google Scholar 

  72. Blecharz, K. G., Colla, R., Rohde, V., & Vajkoczy, P. (2015). Control of the blood-brain barrier function in cancer cell metastasis. Biology of the Cell, 107(10), 342–371.

    Article  PubMed  Google Scholar 

  73. Wilhelm, I., Molnar, J., Fazakas, C., Hasko, J., & Krizbai, I. A. (2013). Role of the blood-brain barrier in the formation of brain metastases. International Journal of Molecular Sciences, 14(1), 1383–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weidle, U. H., Niewohner, J., & Tiefenthaler, G. (2015). The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genomics Proteomics, 12(4), 167–177.

    CAS  PubMed  Google Scholar 

  75. Winkler, F., Osswald, M., Blaes, J., Liao, Y., Solecki, G., Gommel, M., et al. (2016). Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res.

  76. Fortin, D. (2012). The blood-brain barrier: its influence in the treatment of brain tumors metastases. Current Cancer Drug Targets, 12(3), 247–259.

    Article  CAS  PubMed  Google Scholar 

  77. Wrobel, J. K., & Toborek, M. (2016). Blood-brain barrier remodeling during brain metastasis formation. Mol Med.

    Google Scholar 

  78. Yonemori, K., Tsuta, K., Ono, M., Shimizu, C., Hirakawa, A., Hasegawa, T., et al. (2010). Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer, 116(2), 302–308.

    Article  PubMed  Google Scholar 

  79. Connell, J. J., Chatain, G., Cornelissen, B., Vallis, K. A., Hamilton, A., Seymour, L., et al. (2013). Selective permeabilization of the blood-brain barrier at sites of metastasis. Journal of the National Cancer Institute, 105(21), 1634–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adkins, C. E., Mohammad, A. S., Terrell-Hall, T. B., Dolan, E. L., Shah, N., Sechrest, E., et al. (2016). Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clinical & Experimental Metastasis, 33(4), 373–383.

    Article  CAS  Google Scholar 

  81. Lyle, L. T., Lockman, P. R., Adkins, C. E., Mohammad, A. S., Sechrest, E., Hua, E., et al. (2016). Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin Cancer Res.

  82. Zhang, S., Huang, W. C., Zhang, L., Zhang, C., Lowery, F. J., Ding, Z., et al. (2013). SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Research, 73(18), 5764–5774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Do, J., Foster, D., Renier, C., Vogel, H., Rosenblum, S., Doyle, T. C., et al. (2014). Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models. Breast Cancer Research and Treatment, 144(1), 93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, J., Cai, P., Shalviri, A., Henderson, J. T., He, C., Foltz, W. D., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.

    Article  CAS  PubMed  Google Scholar 

  85. Wan, X., Zheng, X., Pang, X., Pang, Z., Zhao, J., Zhang, Z., et al. (2016). Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget.

  86. Kobus, T., Zervantonakis, I. K., Zhang, Y., & McDannold, N. J. (2016). Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. Journal of Controlled Release, 238, 281–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partially by R01CA112567-06 (DY), R01CA184836 (DY), METAvivor Research Grant (DY), and China Medical University Research Fund (DY). D. Yu is the Hubert L. & Olive Stringer Distinguished Chair in Basic Science at MDACC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dihua Yu.

Additional information

Note:

We apologize for not being able to cite all the relevant original research and review articles due to space limitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yu, D. Advances in decoding breast cancer brain metastasis. Cancer Metastasis Rev 35, 677–684 (2016). https://doi.org/10.1007/s10555-016-9638-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9638-9

Keywords

Navigation