Log in

Hydrothermal Transformation of Superviscous Oil in the Presence of Coals, Metal Oxides, and Carbonates

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The results of comparative investigations on the composition and rheological characteristics of superviscous oil during its interaction with isothermal fluids in a closed system are presented. It was shown that the degree of transformation of asphaltenes at a process temperature of 360°C increases with change of pressure from 4 to 21 MPa. Increase of the temperature and pressure of the process to 420°C and 24 MPa leads to destruction of the resin–asphaltenes with an increase of the yield of the fraction with the initial bp 200°C fraction, desulfurization, and decrease of viscosity. It was established that the presence of charcoal during hydrothermal transformation of superviscous oil at 385°C and 22.5 MPa leads to significant decrease of the asphaltene content. The presence of charcoal, iron and aluminum oxides, and nickel and copper carbonates promotes the formation of saturated and aromatic hydrocarbons and increases the yield of the fraction that boils out up to 200°C and to a twofold decrease of the sulfur content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. N. Zhang et al., Fuel, 332, 126014 (2023).

    Article  CAS  Google Scholar 

  2. R. F. Meyer, E. D. Attanasi, World, 434, 650–7 (2003).

    Google Scholar 

  3. A. Lakhova et al., Petroleum Science and Technology, 37, No. 5, 611-616 (2019).

    Article  CAS  Google Scholar 

  4. A. Nosova et al., Petroleum Science and Technology, 36, No. 13, 1001-1006 (2018).

    Article  CAS  Google Scholar 

  5. L. R. Baibekova et al., International Journal of Applied Chemistry, 11, No. 5, 593-599 (2015).

    Google Scholar 

  6. S. M. Petrov et al., Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6., No. 6, 1624-1629 (2015).

    CAS  Google Scholar 

  7. R. R. et al. Zakieva, Chemistry and Technology of Fuels and Oils, 51, No. 5, 480-486 (2015).

  8. S. M. Petrov et al., International Journal of Applied Engineering Research, 10 , No. 24, 44656-61 (2015).

    Google Scholar 

  9. S. M. Petrov et al., Petroleum Chemistry, 56, No. 1, 21-26 (2016).

    Article  CAS  Google Scholar 

  10. S. Petrov et al., IOP Conference Series: Earth and Environmental Science, 282, No. 1, 012004 (2019).

    Article  Google Scholar 

  11. I. Zaidullin et al., Chemistry and Technology of Fuels and Oils, 54, No. 5, 550-556 (2018).

    Article  CAS  Google Scholar 

  12. S. Petrov, R. Sodatova, A. Lakhova, IOP Conference Series: Earth and Environmental Science, 282, No. 1, 012015 (2019).

    Google Scholar 

  13. A. I. Lakhova et al., Res. J. Appl. Sci., 10, 917-921 (2015).

    CAS  Google Scholar 

  14. Kayukova G. P. et al., Chemistry and Technology of Fuels and Oils, 51, No. 1, 117-126 (2015).

    Article  CAS  Google Scholar 

  15. G. P. Kayukova et al., Energy & Fuels, 30, No. 2, 773-783 (2016).

    Article  CAS  Google Scholar 

  16. V. R. Antipenko, O. N. Fedyaeva, A. A. Vostrikov, Neftekhimiya, 61, No. 4, 547-554 (2021).

    Article  Google Scholar 

  17. V. R. Antipenko, Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 6, No. 3, 15-34 (2011).

    Google Scholar 

  18. O. N. Fedyaeva et al., Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 9, No. 1, 62-79 (2014).

    Google Scholar 

  19. O. N. Fedyaeva, V. R. Antipenko, A. A. Vostrikov, Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 12, No. 3, C. 3-19 (2017).

  20. A. V. Vakhin et al., Processes, 9, No. 1, 158 (2021).

    Article  CAS  Google Scholar 

  21. A. V. Vakhin, Energies, 15, No.16, 6047 (2022).

    Article  CAS  Google Scholar 

  22. G. N. Goradze, G. V. Rusinova, Neftekhimiya, 43, No. 5, 342-355 (2003).

    Google Scholar 

  23. G. N. Goradze, M. V. Giruts, Neftekhimiya, 48, No. 6, 412-417 (2008).

    Google Scholar 

  24. J. B. Hye et al., Rev. Tec. INTEVEP (Venezuela), 2, No. 2 (1982).

  25. D. G. Lee, N. A. Noureldin, Energy & Fuels, 3, No. 6, 713-715 (1989).

    Article  CAS  Google Scholar 

  26. J. G. Weissman et al., Energy & fuels, 10, No. 4, 883-889 (1996).

    Article  CAS  Google Scholar 

  27. M. Khalil, R. L. Lee, N. Liu, Fuel, 145, 214-220 (2015).

    Article  CAS  Google Scholar 

  28. A. Lakhova et al., Journal of Petroleum Science and Engineering, 153, 385-390 (2017).

    Article  CAS  Google Scholar 

  29. I. M. Abdrafikova et al., Petroleum Chemistry, 55, No. 2, 104-111 (2015).

    Article  CAS  Google Scholar 

  30. N. Nassar Nashaat, Energy Fuels, No. 25, 1566-1570 (2011).

  31. O. N. Fedyaeva, A. A. Vostrikov, The Journal of Supercritical Fluids, 111, 121-128 (2016).

    Article  CAS  Google Scholar 

  32. S. M. Petrov, Chemistry and Technology of Fuels and Oils, 57, No. 6, 895-900 (2022),.

    Article  CAS  Google Scholar 

  33. R. R. Zakieva et al., Journal of Chemical Technology & Metallurgy, 55, No. 4, 747-757 (2020).

    CAS  Google Scholar 

  34. X. K. Gai et al., Fuel Processing Technology, 142, 315-318 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was carried out with support from the Russian Science Foundation, Grant No. 18-77-10023, https://rscf.ru/project/18-77-10023/

The investigation was conducted using equipment of the Center of Complex Program «Nanomaterials and Nanotechnologies» of the Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Petrov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 61–65 January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakieva, R.R., Petrov, S.M. Hydrothermal Transformation of Superviscous Oil in the Presence of Coals, Metal Oxides, and Carbonates. Chem Technol Fuels Oils 59, 69–74 (2023). https://doi.org/10.1007/s10553-023-01505-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01505-9

Keywords

Navigation