Log in

Calcium intake, polymorphisms of the calcium-sensing receptor, and recurrent/aggressive prostate cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

To assess whether calcium intake and common genetic variants of the calcium-sensing receptor (CASR) are associated with either aggressive prostate cancer (PCa) or disease recurrence after prostatectomy.

Methods

Calcium intake at diagnosis was assessed, and 65 common single-nucleotide polymorphisms (SNPs) in CASR were genotyped in 886 prostatectomy patients. We investigated the association between calcium intake and CASR variants with both PCa recurrence and aggressiveness (defined as Gleason score ≥4 + 3, stage ≥pT3, or nodal-positive disease).

Results

A total of 285 men had aggressive disease and 91 experienced recurrence. A U-shaped relationship between calcium intake and both disease recurrence and aggressiveness was observed. Compared to the middle quintile, the HR for disease recurrence was 3.07 (95 % CI 1.41–6.69) for the lowest quintile and 3.21 (95 % CI 1.47–7.00) and 2.97 (95 % CI 1.37–6.45) for the two upper quintiles, respectively. Compared to the middle quintile, the OR for aggressive disease was 1.80 (95 % CI 1.11–2.91) for the lowest quintile and 1.75 (95 % CI 1.08–2.85) for the highest quintile of calcium intake. The main effects of CASR variants were not associated with PCa recurrence or aggressiveness. In the subgroup of patients with moderate calcium intake, 31 SNPs in four distinct blocks of high linkage disequilibrium were associated with PCa recurrence.

Conclusions

We observed a protective effect of moderate calcium intake for PCa aggressiveness and recurrence. While CASR variants were not associated with these outcomes in the entire cohort, they may be associated with disease recurrence in men with moderate calcium intakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci EL (2001) Dairy products, calcium, and prostate cancer risk in the physicians’ health study. Am J Clin Nutr 74:549–554

    CAS  PubMed  Google Scholar 

  2. Kristal AR, Cohen JH, Qu P, Stanford JL (2002) Associations of energy, fat, calcium, and vitamin D with prostate cancer risk. Cancer Epidemiol Biomark Prev 11:719–725

    CAS  Google Scholar 

  3. Tseng M, Breslow RA, Graubard BI, Ziegler RG (2005) Dairy, calcium, and vitamin D intakes and prostate cancer risk in the national health and nutrition examination epidemiologic follow-up study cohort. Am J Clin Nutr 81:1147–1154

    CAS  PubMed  Google Scholar 

  4. Gao X, LaValley MP, Tucker KL (2005) Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 97:1768–1777. doi:10.1093/jnci/dji402

    Article  CAS  PubMed  Google Scholar 

  5. Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH (2012) Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int J Cancer 131:1396–1406. doi:10.1002/ijc.27372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Giovannucci E, Rimm EB, Wolk A, Ascherio A, Stampfer MJ, Colditz GA, Willett WC (1998) Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res 58:442–447

    CAS  PubMed  Google Scholar 

  7. Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willet WC, Giovannucci E (2001) A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 12:557–567

    Article  CAS  PubMed  Google Scholar 

  8. Snowdon DA, Phillips RL, Choi W (1984) Diet, obesity, and risk of fatal prostate cancer. Am J Epidemiol 120:244–250

    CAS  PubMed  Google Scholar 

  9. Giovannucci E, Liu Y, Stampfer MJ, Willett WC (2006) A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomark Prev 15:203–210. doi:10.1158/1055-9965.EPI-05-0586

    Article  CAS  Google Scholar 

  10. Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121:1571–1578. doi:10.1002/ijc.22788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nørgaard M, Jensen AØ, Jacobsen JB, Cetin K, Fryzek JP, Sørensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999–2007). J Urol 184:162–167. doi:10.1016/j.juro.2010.03.034

    Article  PubMed  Google Scholar 

  12. Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, Lee KA, Zheng M, Hei YJ, Coleman RE (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69. doi:10.1093/jnci/dji002

    Article  CAS  PubMed  Google Scholar 

  13. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  14. Yano S, Macleod RJ, Chattopadhyay N, Tfelt-Hansen J, Kifor O, Butters RR, Brown EM (2004) Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells: role of epidermal growth factor receptor transactivation. Bone 35:664–672. doi:10.1016/j.bone.2004.04.014

    Article  CAS  PubMed  Google Scholar 

  15. Sanders JL, Chattopadhyay N, Kifor O, Yamaguchi T, Brown EM (2001) Ca(2+)-sensing receptor expression and pthrp secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab 281:E1267–E1274

    CAS  PubMed  Google Scholar 

  16. Huang C, Liu S, Miller RT (2011) Role of p115rhogef in the regulation of extracellular ca(2+)-induced choline kinase activation and prostate cancer cell proliferation. Int J Cancer 128:2833–2842. doi:10.1002/ijc.25633

    Article  CAS  PubMed  Google Scholar 

  17. Lin KI, Chattopadhyay N, Bai M, Alvarez R, Dang CV, Baraban JM, Brown EM, Ratan RR (1998) Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. Biochem Biophys Res Commun 249:325–331. doi:10.1006/bbrc.1998.9124

    Article  CAS  PubMed  Google Scholar 

  18. Liao J, Schneider A, Datta NS, McCauley LK (2006) Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 66:9065–9073. doi:10.1158/0008-5472.CAN-06-0317

    Article  CAS  PubMed  Google Scholar 

  19. Jorde R, Schirmer H, Njølstad I, Løchen ML, Bøgeberg Mathiesen E, Kamycheva E, Figenschau Y, Grimnes G (2013) Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, type 2 diabetes, cancer and mortality: the tromsø study. Eur J Epidemiol 28:569–578. doi:10.1007/s10654-013-9822-y

    Article  CAS  PubMed  Google Scholar 

  20. Shui IM, Mucci LA, Wilson KM, Kraft P, Penney KL, Stampfer MJ, Giovannucci E (2013) Common genetic variation of the calcium-sensing receptor and lethal prostate cancer risk. Cancer Epidemiol Biomark Prev 22:118–126. doi:10.1158/1055-9965.EPI-12-0670-T

    Article  CAS  Google Scholar 

  21. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S, Dadaev T, Neal DE, Hamdy FC, Donovan JL, Muir K, Giles GG, Severi G, Wiklund F, Gronberg H, Haiman CA, Schumacher F, Henderson BE, Le Marchand L, Lindstrom S, Kraft P, Hunter DJ, Gapstur S, Chanock SJ, Berndt SI, Albanes D, Andriole G, Schleutker J, Weischer M, Canzian F, Riboli E, Key TJ, Travis RC, Campa D, Ingles SA, John EM, Hayes RB, Pharoah PD, Pashayan N, Khaw KT, Stanford JL, Ostrander EA, Signorello LB, Thibodeau SN, Schaid D, Maier C, Vogel W, Kibel AS, Cybulski C, Lubinski J, Cannon-Albright L, Brenner H, Park JY, Kaneva R, Batra J, Spurdle AB, Clements JA, Teixeira MR, Dicks E, Lee A, Dunning AM, Baynes C, Conroy D, Maranian MJ, Ahmed S, Govindasami K, Guy M, Wilkinson RA, Sawyer EJ, Morgan A, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As NJ, Woodhouse CJ, Thompson A, Dudderidge T, Ogden C, Cooper CS, Lophatananon A, Cox A, Southey MC, Hopper JL, English DR, Aly M, Adolfsson J, Xu J, Zheng SL, Yeager M, Kaaks R, Diver WR, Gaudet MM, Stern MC, Corral R, Joshi AD, Shahabi A, Wahlfors T, Tammela TL, Auvinen A, Virtamo J, Klarskov P, Nordestgaard BG, Røder MA, Nielsen SF, Bojesen SE, Siddiq A, Fitzgerald LM, Kolb S, Kwon EM, Karyadi DM, Blot WJ, Zheng W, Cai Q, McDonnell SK, Rinckleb AE, Drake B, Colditz G, Wokolorczyk D, Stephenson RA, Teerlink C, Muller H, Rothenbacher D, Sellers TA, Lin HY, Slavov C, Mitev V, Lose F, Srinivasan S, Maia S, Paulo P, Lange E, Cooney KA, Antoniou AC, Vincent D, Bacot F, Tessier DC, Kote-Jarai Z, Easton DF (2013) Identification of 23 new prostate cancer susceptibility loci using the icogs custom genoty** array. Nat Genet 45:385–391. doi:10.1038/ng.2560 391e1-2

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834. doi:10.1002/gepi.20533

    Article  PubMed Central  PubMed  Google Scholar 

  23. International HapMap Consortium (2003) The international hapmap project. Nature 426:789–796. doi:10.1038/nature02168

    Article  Google Scholar 

  24. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369. doi:10.1002/gepi.20310

    Article  PubMed  Google Scholar 

  25. Gao X, Becker LC, Becker DM, Starmer JD, Province MA (2010) Avoiding the high bonferroni penalty in genome-wide association studies. Genet Epidemiol 34:100–105. doi:10.1002/gepi.20430

    PubMed Central  PubMed  Google Scholar 

  26. Gao X (2011) Multiple testing corrections for imputed snps. Genet Epidemiol 35:154–158. doi:10.1002/gepi.20563

    Article  PubMed Central  PubMed  Google Scholar 

  27. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    CAS  PubMed  Google Scholar 

  28. Cox DR (1972) Regression models and life-tables. JR Stat Soc B 34:187–220

    Google Scholar 

  29. Aulchenko YS, Struchalin MV, van Duijn CM (2010) ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinform 11:134. doi:10.1186/1471-2105-11-134

    Article  Google Scholar 

  30. Talamini R, La Vecchia C, Decarli A, Negri E, Franceschi S (1986) Nutrition, social factors and prostatic cancer in a northern italian population. Br J Cancer 53:817–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mettlin C, Selenskas S, Natarajan N, Huben R (1989) Beta-carotene and animal fats and their relationship to prostate cancer risk. A case–control study. Cancer 64:605–612

    Article  CAS  PubMed  Google Scholar 

  32. Jain MG, Hislop GT, Howe GR, Ghadirian P (1999) Plant foods, antioxidants, and prostate cancer risk: findings from case–control studies in canada. Nutr Cancer 34:173–184. doi:10.1207/S15327914NC3402_8

    Article  CAS  PubMed  Google Scholar 

  33. La Vecchia C, Negri E, D’Avanzo B, Franceschi S, Boyle P (1991) Dairy products and the risk of prostatic cancer. Oncology 48:406–410

    Article  PubMed  Google Scholar 

  34. De Stefani E, Fierro L, Barrios E, Ronco A (1995) Tobacco, alcohol, diet and risk of prostate cancer. Tumori 81:315–320

    PubMed  Google Scholar 

  35. Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, Lin X (2011) Kernel machine snp-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol 35:620–631. doi:10.1002/gepi.20610

    Article  PubMed Central  PubMed  Google Scholar 

  36. Cai T, Tonini G, Lin X (2011) Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics 67:975–986. doi:10.1111/j.1541-0420.2010.01544.x

    Article  PubMed Central  PubMed  Google Scholar 

  37. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93. doi:10.1016/j.ajhg.2011.05.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani DC, Wurfel MM, Lin X (2012) Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am J Hum Genet 91:224–237. doi:10.1016/j.ajhg.2012.06.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lee S, Wu MC, Lin X (2012) Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13:762–775. doi:10.1093/biostatistics/kxs014

    Article  PubMed Central  PubMed  Google Scholar 

  40. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223. doi:10.1038/ng1669

    Article  PubMed  Google Scholar 

  41. Rowland GW, Schwartz GG, John EM, Ingles SA (2012) Calcium intake and prostate cancer among african americans: effect modification by vitamin D receptor calcium absorption genotype. J Bone Miner Res 27:187–194. doi:10.1002/jbmr.505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wilson KM, Shui IM, Mucci LA, Giovannucci E (2015) Calcium and phosphorus intake and prostate cancer risk: a 24-y follow-up study. Am J Clin Nutr 101:173–183. doi:10.3945/ajcn.114.088716

    Article  CAS  PubMed  Google Scholar 

  43. Williams CD, Whitley BM, Hoyo C, Grant DJ, Schwartz GG, Presti JC, Iraggi JD, Newman KA, Gerber L, Taylor LA, McKeever MG, Freedland SJ (2012) Dietary calcium and risk for prostate cancer: a case–control study among US veterans. Prev Chronic Dis 9:E39

    PubMed Central  PubMed  Google Scholar 

  44. Tuohimaa P, Tenkanen L, Ahonen M, Lumme S, Jellum E, Hallmans G, Stattin P, Harvei S, Hakulinen T, Luostarinen T, Dillner J, Lehtinen M, Hakama M (2004) Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case–control study in the nordic countries. Int J Cancer 108:104–108. doi:10.1002/ijc.11375

    Article  CAS  PubMed  Google Scholar 

  45. Kapur K, Johnson T, Beckmann ND, Sehmi J, Tanaka T, Kutalik Z, Styrkarsdottir U, Zhang W, Marek D, Gudbjartsson DF, Milaneschi Y, Holm H, Diiorio A, Waterworth D, Li Y, Singleton AB, Bjornsdottir US, Sigurdsson G, Hernandez DG, Desilva R, Elliott P, Eyjolfsson GI, Guralnik JM, Scott J, Thorsteinsdottir U, Bandinelli S, Chambers J, Stefansson K, Waeber G, Ferrucci L, Kooner JS, Mooser V, Vollenweider P, Beckmann JS, Bochud M, Bergmann S (2010) Genome-wide meta-analysis for serum calcium identifies significantly associated snps near the calcium-sensing receptor (CASR) gene. PLoS Genet 6:e1001035. doi:10.1371/journal.pgen.1001035

    Article  PubMed Central  PubMed  Google Scholar 

  46. Peterson JL, Buskirk SJ, Heckman MG, Parker AS, Diehl NN, Tzou KS, Paryani NN, Ko SJ, Daugherty LC, Vallow LA, Pisansky TM (2013) Evaluation of serum calcium as a predictor of biochemical recurrence following salvage radiation therapy for prostate cancer. ISRN Oncol 2013:239241. doi:10.1155/2013/239241

    PubMed Central  PubMed  Google Scholar 

  47. Skinner HG, Schwartz GG (2008) Serum calcium and incident and fatal prostate cancer in the national health and nutrition examination survey. Cancer Epidemiol Biomark Prev 17:2302–2305. doi:10.1158/1055-9965.EPI-08-0365

    Article  CAS  Google Scholar 

  48. Skinner HG, Schwartz GG (2009) A prospective study of total and ionized serum calcium and fatal prostate cancer. Cancer Epidemiol Biomark Prev 18:575–578. doi:10.1158/1055-9965.EPI-08-0915

    Article  CAS  Google Scholar 

  49. Schwartz GG, John EM, Rowland G, Ingles SA (2010) Prostate cancer in african-american men and polymorphism in the calcium-sensing receptor. Cancer Biol Ther 9:994–999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no conflict of interest. Moritz Binder was supported by a German Academic Exchange Service Scholarship. Irene M. Shui was supported by a United States Army Department of Defense Prostate Cancer Postdoctoral Fellowship. Kathryn M. Wilson, Kathryn L. Penney, and Lorelei A. Mucci were supported by Prostate Cancer Foundation Young Investigator Awards. Biomarker work in the Division of Urology is supported by Anthony DiNovi and David McGraw.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Adam S. Kibel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, M., Shui, I.M., Wilson, K.M. et al. Calcium intake, polymorphisms of the calcium-sensing receptor, and recurrent/aggressive prostate cancer. Cancer Causes Control 26, 1751–1759 (2015). https://doi.org/10.1007/s10552-015-0668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-015-0668-3

Keywords

Navigation