Log in

Identification and expression analysis of seven MADS-box genes from Annona squamosa

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

MADS-box genes encode a family of transcription factors that regulate diverse growth and developmental processes in plants, including flowering. In this study, comprehensive characterization and expression profiling analyses of seven sugar apple (Annona squamosa L.) MADS-box genes were performed using rapid amplification of cDNA ends method. Domain and phylogenetic analyses grouped these seven MADS-box genes into six different clades and they showed high similarity with orthologs in Arabidopsis. Expression patterns of these MADS-box genes were investigated during different flower developmental stages and in various reproductive organs, including petal, stamen, sepal, and pistil. Most of the MADS-box genes studied were least expressed in the sepal and AsAGL67 and AsAGL80 expression was weak in all tissues. AsSEP1 and AsAGAMOUS showed highest expressions in the stamen and pistil, and AsAGL12 showed stamen-specific expression. Dynamic expression patterns of MADS-box genes in different reproductive stages suggest involvement in flower development. Interestingly, a number of these MADS-box genes showed responses to gibberellin, abscisic acid, and salicylic acid treatments, suggesting control of their expression by phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

AG:

AGAMOUS

CaMV:

cauliflower mosaic virus

GA:

gibberellin

GFP:

green fluorescent protein

NJ:

neighbour-joining

RACE:

rapid amplification of cDNA ends

SA:

salicylic acid

References

  • Almeida, A.M., Yockteng, R., Otoni, W.C., Specht, C.D.: Positive selection on the K domain of the AGAMOUS protein in the Zingiberales suggests a mechanism for the evolution of androecial morphology. - EvoDevo 6: 7, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., Yanofsky, M.F.: MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. - Plant J. 24: 457–466, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Bezerra, I.C., Michaels, S.D., Schomburg, F.M., Amasino, R.M.: Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. - Plant J. 40: 112–119, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Causier, B., Schwarz-Sommer, Z., Davies, B.: Floral organ identity: 20 years of ABCs. - Semin. Cell. Dev. Biol. 21: 73–79, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., Jang, S.K.: Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. - Plant mol. Biol. 40: 419–429, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Z., Zhou, B., Zhang, Z., Hu, Z.: Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. - S. Afr. J. Bot. 88: 76–79, 2013.

    Article  CAS  Google Scholar 

  • De Bodt, S., Raes, J., Van de Peer, Y., Theißen, G.: And then there were many: MADS goes genomic. - Trends Plant Sci. 8: 475–483, 2003.

    Article  PubMed  Google Scholar 

  • Diaz-Riquelme, J., Lijavetzky, D., Martinez-Zapater, J.M., Carmona, M.J.: Genome-wide analysis of MIKCC-type MADS box genes in grapevine. - Plant Physiol. 149: 354–369, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dornelas, M.C., Patreze, C.M., Angenent, G.C., Immink, R.G.H.: MADS: the missing link between identity and growth? - Trends Plant Sci. 16: 89–97, 2010.

    Article  PubMed  Google Scholar 

  • Duan, W., Song, X., Liu, T., Huang, Z., Ren, J., Hou, X., Li, Y.: Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). - Mol. Genet. Genomics 290: 239–255, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. - Proc. nat. Acad. Sci. USA 95: 14863–14868, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., Fang, S.C.: The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. - Plant Cel. 12: 183–198, 2000.

    Article  CAS  Google Scholar 

  • Groth, E., Tandre, K., Engstrom, P., Vergara-Silva, F.: AGAMOUS subfamily MADS-box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae. - Evol. Dev. 13: 159–170, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Huang, F., Chi, Y., Gai, J., Yu, D.: Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein. - Gene 438: 40–48, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann, K., Melzer, R., Theiß en, G.: MIKC-type MADSdomain proteins: structural modularity, protein interactions and network evolution in land plants. - Gene 347: 183–198, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Koh, J., Yoo, M.J., Kong, H., Hu, Y., Ma, H., Soltis, P.S., Soltis, D.E.: Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. - Plant J. 43: 724–744, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, E.M., Irish, V.F.: Evolution of genetic mechanisms controlling petal development. - Nature 399: 144–148, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Woo, Y.M., Ryu, S.I., Shin, Y.D., Kim, W.T., Park, K.Y., Lee, I.J., An, G.: Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. - Plant physiol. 147: 156–168, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H.Y., Liu, F.F., Liu, G.F., Wang, S., Guo, X.H., **g, J.: Molecular cloning and expression analysis of 13 MADSbox genes in Betula platyphylla. - Plant mol. Biol. Rep. 30: 149–157, 2012a.

    Article  CAS  Google Scholar 

  • Li, Z., Liu, G., Zhang, J., Lu, S., Yi, S., Bao, M.: Cloning and characterization of paleoAP3-like MADS-box gene in London plane tree. - Biol. Plant. 56: 585–589, 2012b.

    Article  CAS  Google Scholar 

  • Little, C.H., MacDonald, J.E.: Effects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca. - Tree Physiol. 23: 73–83, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K.D., Li, H.L., Yuan, C.C., Huang, Y.L., Chen, Y., Liu, J.X.: Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCHscale. - Sci. Hort. 181: 76–80, 2015.

    Article  Google Scholar 

  • Lu, S.J., Wei, H., Wang, Y., Wang, H.M., Yang, R.F., Zhang, X.B., Tu, J.M.: Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.). - Plant mol. Biol. Rep. 30: 1461–1469, 2012.

    Article  CAS  Google Scholar 

  • Martínez, C., Pons, E., Prats, G., León, J.: Salicylic acid regulates flowering time and links defence responses and reproductive development. - Plant J. 37: 209–217, 2004.

    Article  PubMed  Google Scholar 

  • Masiero, S., Colombo, L., Grini, P.E., Schnittger, A., Kater, M.M.: The emerging importance of type I MADS box transcription factors for plant reproduction. - Plant Cell 23: 865–872, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., Lee, I.: The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. - Plant J. 35: 613–623, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Mutasa-Göttgens, E., Hedden, P.: Gibberellin as a factor in floral regulatory networks. - J. exp. Bot. 60: 1979–1989, 2009.

    Article  PubMed  Google Scholar 

  • Ng, M., Yanofsky, M.F.: Function and evolution of the plant MADS-box gene family. - Nat. Rev. Genet. 2: 186–195, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Norman, C., Runswick, M., Pollock, R., Treisman, R.: Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. - Cell 55: 989–1003, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Passmore, S., Maine, G.T., Elble, R., Christ, C., Tye, B.-K.: Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. - J. mol. Biol. 204: 593–606, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Patharkar, O.R., Walker, J.C.: Floral organ abscission is regulated by a positive feedback loop. - Proc. nat. Acad. Sci. USA 112: 2906–2911, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., Yanofsky, M.F.: B and C floral organ identity functions require SEPALLATA MADS-box genes. - Nature 405: 200–203, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., Yanofsky, M.F.: APETALA1 and SEPALLATA3 interact to promote flower development. - Plant J. 26: 385–394, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Robles, P., Pelaz, S.: Flower and fruit development in Arabidopsis thaliana. - Int. J. dev. Biol. 49: 633–643, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Puig, J., Meynard, D., Khong, G.N., Pauluzzi, G., Guiderdoni, E., Gantet, P.: Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. - Gene Expression Patterns 13: 160–170, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Remay, A., Lalanne, D., Thouroude, T., Le Couviour, F., Hibrand-Saint Oyant, L., Foucher, F.: A survey of flowering genes reveals the role of gibberellins in floral control in rose. - Theor. appl. Genet. 119: 767–781, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Sablowski, R.: Flowering and determinacy in Arabidopsis. - J. exp. Bot. 58: 899–907, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., Matsuoka, M.: Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transitionin rice. - Plant Physiol. 125: 1508–1516, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., Sommer, H.: Genetic control of flower development by homeotic genes in Antirrhinum majus. - Science 250: 931–936, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Seymour, G.B., Ryder, C.D., Cevik, V., Hammond, J.P., Popovich, A., King, G.J., Vrebalov, J., Giovannoni, J.J., Manning, K.: A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. - J. exp. Bot. 62: 1179–1188, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Shu, Y., Yu, D., Wang, D., Guo, D., Guo, C.: Genome-wide survey and expression analysis of the MADS-box gene family in soybean. - Mol. Biol. Rep. 40: 3901–3911, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Smaczniak, C., Immink, R.G., Angenent, G.C., Kaufmann, K.: Developmental and evolutionary diversity of plant MADSdomain factors: insights from recent studies. - Development 139: 3081–3098, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H., Schwarz-Sommer, Z.: Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. - EMBO J. 9: 605–613, 1990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Xu, Y., Ng, K.H., Ito, T.: A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. - Genes Dev. 23: 1791–1804, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., Ohme-Takagi, M., Terakawa, T.: Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. - Sci. Rep. 3: 2641, 2013.

    PubMed  PubMed Central  Google Scholar 

  • Tapia-Lopez, R., Garcia-Ponce, B., Dubrovsky, J.G., Garay- Arroyo, A., Perez-Ruiz, R.V., Kim, S.H., Acevedo, F., Pelaz, S., Alvarez-Buylla, E.R.: An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. - Plant Physiol. 146: 1182–1192, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., Saedler, H.: A short history of MADS-box genes in plants. - Plant mol. Biol. 42: 115–149, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Theissen, G., Kim, J.T., Saedler, H.: Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. - J. mol. Evol. 43: 484–516, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Theissen, G., Melzer, R.: Molecular mechanisms underlying origin and diversification of the angiosperm flower. - Ann. Bot. 100: 603–619, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theissen, G., Saedler, H.: Plant biology. Floral quartets. - Nature 409: 469–471, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Weigel, D., Meyerowitz, E.M.: The ABCs of floral homeotic genes. - Cell 78: 203–209, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Wells, C.E., Vendramin, E., Jimenez Tarodo, S., Verde, I., Bielenberg, D.G.: A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. - BMC Plant Biol. 15: 41, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmowicz, E., Kesy, J., Kopcewicz, J.: Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. - J. Plant Physiol. 165: 1917–1928, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Zhang, Q., Sun, L., Du, D., Cheng, T., Pan, H., Yang, W., Wang, J.: Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. - Mol. Genet. Genomics 289: 903–920, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, M., Takeno, K.: Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. - J. Plant Physiol. 171: 205–212, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Fanning, L., Jack, T.: The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. - Plant J. 33: 47–59, 2003.

    Article  PubMed  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., Meyerowitz, E.M.: The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. - Nature 346: 35–39, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., Galvã o, V.C., Zhang, Y.C., Horrer, D., Zhang, T.Q., Hao, Y.H., Feng, Y.Q., Wang, S., Schmid, M., Wang, J.W.: Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. - Plant Cell 24: 3320–3332, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., Depamphilis, C.W., Ma, H.: The evolution of the SEPALLATA subfamily of MADSbox genes: a preangiosperm origin with multiple duplications throughout angiosperm history. - Genetics 169: 2209–2223, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Li, H., Zhang, D., Liu, Y., Fu, J., Shi, Y., Song, Y., Wang, T., Li, Y.: Characterization and expression analysis of six MADS-box genes in maize (Zea mays L.). - J. Plant Physiol. 169: 797–806, 2012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Liu or C. Yuan.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (grant No. 31201586); the Science and Technology Program of Guangdong, China (grant Nos. 2013B020304008 and 2014A020208138); the Key Project of Department of Education of Guangdong Province (grant No. 2013KJCX0124); the Key Laboratory of Zhanjiang Tropical Characteristic Plant Resources Technology Development (grant No. 2014A06008). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Feng, S., Jiang, Y. et al. Identification and expression analysis of seven MADS-box genes from Annona squamosa . Biol Plant 61, 24–34 (2017). https://doi.org/10.1007/s10535-016-0688-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0688-1

Additional key words

Navigation