Log in

Molecular characterization and subcellular localization of salt-inducible lipid transfer proteins in rice

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Rice (Oryza sativa L.) is a salt-sensitive species. Salt stress can cause injury to the plant cellular membrane. Plant lipid transfer proteins (LTPs) are abundant lipid binding proteins that are important in membrane vesicle biogenesis and trafficking, however, the biological importance of LTPs on salt-stress response in rice remains unclear. Therefore, salt-responsive rice LTPs were identified and characterized in this study. Microarray analysis showed seven genes positively regulated by salinity, including five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL; LtpL1, and LtpL2) genes. Amino acid alignment revealed that all these Ltp and LtpL genes contained the N-terminal signal peptide. Apart from LtpL1, all salt-inducible Ltp genes had the conserved eight cysteine residue motifs backbone. Verification of gene expression to different stimuli in rice seedlings revealed that salt-regulated Ltp genes differentially responded to drought, cold, H2O2, abscisic acid (ABA) and CaCl2. Furthermore, the expression of Ltp and LtpL genes was tissue-specifically regulated by ABA-dependent and independent pathway. In silico analysis of a 1.5-kb 5’-upstream region of these genes showed regulatory cis-elements associated with ABA, calcium, and cold/drought responses. Three LtpII subfamily genes, including LtpII.3, LtpII.5, and LtpII.6, were strictly expressed in flowers and seeds, and LtpIII.1 mRNA strongly accumulated in stem tissue. Subcellular localization analysis of LTP-DsRed fusion proteins revealed that the five LTPs and two LTPLs localized at the endoplasmic reticulum. The results provide new clues to further understanding the biological functions of Ltp genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ABRE:

ABA-responsive element

8-CM:

eight-cysteine motif

DRE/CRT:

dehydration-responsive/C-repeat element

ER:

endoplasmic reticulum

LTPs:

lipid transfer proteins

LtpL:

Ltp-like

MYB:

MYB transcription factor recognition sequence

MYC:

MYC transcription factor recognition sequence

ROS:

reactive oxygen species

ROSE:

ROS/oxidative stress-responsive element

RT:

reverse transcription

TNG67:

Tainung 67

References

  • Ahmad, P., Hakeem, K.R., Kumar, A., Ashraf, M., Akram, N.A.: Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). — Afr. J. Biotechnol. 11: 2694–2703, 2012.

    CAS  Google Scholar 

  • Beisson, F., Koo, A.J., Ruuska, S., Schwender, J., Pollard, M., Thelen, J.J., Paddock, T., Salas, J.J., Savage, L., Milcamps, A., Mhaske, V.B., Cho, Y., Ohlrogge, J.B.: Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. — Plant Physiol. 132: 681–697, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutrot, F., Chantret, N., Gautier, M.F.: Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. — BMC Genomics 9: 86–104, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charvolin, D., Douliez, J.P., Marion, D., Cohen-Addad, C., Pebay-Peyroula, E.: The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 Å resolution. — Eur. J. Biochem. 264: 562–568, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, A.H., Quail, P.H.: Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. — Transgen. Res. 5: 213–218, 1996.

    Article  CAS  Google Scholar 

  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E.: WebLogo: a sequence logo generator. — Genome Res. 14:1188–1190, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135:1–9, 1998.

    Article  CAS  Google Scholar 

  • Diz, M.S., Carvalho, A.O., Ribeiro, S.F., Da Cunha, M., Beltramini, L., Rodrigues, R., Nascimento, V.V., Machado, O.L., Gomes, V.M.: Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. — Physiol. Plant. 142: 233–246, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Edstam, M.M., Laurila, M., Höglund, A., Raman, A., Dahlström, K.M., Salminen, T.A., Edqvist, J., Blomqvist, K: Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. - Plant Physiol. Biochem. 75: 55–69, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Edstam, M.M., Viitanen, L., Salminen, T.A., Edqvist, J.: Evolutionary history of the non-specific lipid transfer proteins. — Mol. Plant 4: 947–964, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson, O., Nielsen, H., Von Heijne, G.: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. — Protein Sci. 8: 978–984, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, G., **, L.P., **e, K.Y., Qu, D.Y.: The potato StLTPa7 gene displays a complex Ca-associated pattern of expression during the early stage of potato-Ralstonia solanacearum interaction. — Mol. Plant Pathol. 10: 15–27, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Garcı́a-Garrido, J.M., Menossi, M., Puigdoménech, P., Martı́nez-Izquierdo, J.A., Delseny, M. Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice. - FEBS Lett. 428: 193–199, 1998.

    Article  PubMed  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Grattan, S.R., Grieve, C.M.: Mineral nutrient acquisition and response by plants grown in saline environments. - In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 203–229. Marcel Dekker, New York 1999.

    Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., Ben-Hayyim, G.: Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. — Planta 203: 460–469, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Guiderdoni, E., Cordero, M.J., Vignols, F., García-Garrido, J.M., Lescot, M., Tharreau, D., Meynard, D., Ferrière, N., Notteghem, J.L., Delseny, M.: Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. — Plant mol. Biol. 49: 683–699, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Yang, H., Zhang, X., Yang S.: Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. — J. exp. Bot. 64: 1755–1767, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T.: Plant cis-acting regulatory DNA elements (PLACE) database. — Nucl. Acids Res. 27: 297–300, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann, B., Andersen, K.V., Nielsen, P.R., Bech, L.M., Poulsen, F.M.: Structure in solution of a four-helix lipid binding protein. — Protein Sci. 5: 13–23, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg, N., Bülow, L.: Improving stress tolerance in plants by gene transfer. — Trends Plant Sci. 3: 61–66, 1998.

    Article  Google Scholar 

  • Jang, C.S., Lee, H.J., Chang, S.J., Seo, Y.W.: Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). — Plant Sci. 167: 995–1001, 2004.

    Article  CAS  Google Scholar 

  • Jose-Estanyol, M., Gomis-Ruth, F.X., Puigdomenech, P.: The eight-cysteine motif, a versatile structure in plant proteins. — Plant Physiol. Biochem. 42: 355–365, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kader, J.C.: Lipid-transfer proteins in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 627–654, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Kader, J.C.: Lipid transfer proteins: a puzzling family of plant proteins. — Trends Plant Sci. 2: 66–70, 1997.

    Article  Google Scholar 

  • Kaplan, B., Davydov, O., Knight, H., Galon, Y., Knight, M.R., Fluhr, R., Fromm, H.: Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. — Plant Cell 18: 2733–2748, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara, Y., De la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., Childs, K.L., Davidson, R.M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S.S., Kim, J., Numa, H., Itoh, T., Buell, C.R., Matsumoto, T.: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. — Rice 6: 4, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, T.H., Park, J.H., Kim, M.C., Cho, SH: cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene. - J. Plant Physiol. 165: 345–349, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. — Bioinformatics 23: 2947–2948, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., Wu, G.: Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. — J. exp. Bot. 66: 5663–5681, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Shangguan, Y., Zhu, J., Lu, Y., Han, B.: The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. — Planta 238: 845–857, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Madrid, S.M.: The barley lipid transfer protein is targeted into the lumen of the endoplasmic reticulum. — Plant Physiol. Biochem. 29: 659–703, 1991.

    Google Scholar 

  • Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., Lukyanov S, A.: Fluorescent proteins from nonbioluminescent Anthozoa species. — Nat. Biotechnol. 17: 969–973, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Mittova, V., Guy, M., Tal, M., Volokita, M.: Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. — J. exp. Bot. 55: 1105–1113, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat, L., Burbach, C., Baluska, F., De la Canal, L.: An extracellular lipid transfer protein is relocalized intracellularly during seed germination. — J. exp. Bot. 63: 6555–6563, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Potocka, I., Baldwin, T.C., Kurczynska, E.U.: Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. — Plant Cell Rep. 31: 2031–2045, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi, H., Saibi, W., Alaoui, M.M., Hmyene, A., Masmoudi, K., Hanin, M., Brini, F.: A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. — Plant Physiol. Biochem. 89: 64–75, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Salama, K.H.A., Mansour, M.M.F., Ali, F.Z.M., Abou-Hadid, A.F.: NaCl-induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars in their response to salinity. — Acta. Physiol. Plant. 29: 351–359, 2007.

    Article  CAS  Google Scholar 

  • Seo, P.J., Lee, S.B., Suh, M.C., Park, M.J., Go, Y.S., Park, C.M.: The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. — Plant Cell 23:1138-1152, 2011.

  • Shin, D.H., Lee, J.Y., Hwang, K.Y., Kim, K.K., Suh, S.W.: High resolution crystal structure of the nonspecific lipidtransfer protein from maize seedlings. — Structure 3: 189–199, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein, K.A., Moskal, W.A.J., Wu, H.A., Underwood, B.A., Graham, M.A., Town, C.D., Van den Bosch, K.A.: Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. — Plant J. 51: 262–280, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia, G., Morales-Quintana, L., Parra, C., Berbel, A., Alcorta, M.: Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. — Plant mol. Biol. 82: 485–501, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Schumann, S., Godoy, J.A., Pintor-Toro, J.A.: A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. — Plant mol. Biol. 18: 749–757, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi, S., Osafune, T., Tsugeki, R., Nishimura, M., Yamada, M.: Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. — J. Biochem. 111: 500–508, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Vignols, F., Lund, G., Pammi, S., Tremousaygue, D., Grellet, F., Kader, J.C., Puigdomenech, P., Delseny, M.: Characterization of a rice gene coding for a lipid transfer protein. — Gene 142: 265–270, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Vignols, F., Wigger, M., García Garrido, J.M., Grellet, F., Kader, J.C., Delseny, M.: Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. — Gene 195: 177–186, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.: Heat tolerance in plants: an overview. — Environ. exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Wang, C., **e, C., Chi, F., Hu, W., Mao, G., Sun, D., Li, C., Sun, Y.: BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. — Plant Cell Rep. 27: 159–169, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Zang, X., Kabir, M.R., Liu, K., Liu, Z., Ni, Z., Yao, Y., Hu, Z., Sun, Q., Peng, H.A.: Wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. — Gene 550: 18–26, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.W., Hwang, S.G., Karuppanapandian, T., Liu, A., Kim, W., Jang, C.S.: Insight into the molecular evolution of nonspecific lipid transfer proteins via comparative analysis between rice and sorghum. — DNA Res. 19: 179–194, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, T.M., Lin, K.C., Liau, W.S., Chao, Y.Y., Yang, L.H., Chen, S.Y., Lu, C.A., Hong, C.Y.: A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa, L.). — Plant mol. Biol. 90: 107–115, 2015.

    Article  PubMed  Google Scholar 

  • Yeats, T.H., Rose, J.K.C.: The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). — Protein Sci. 17: 191–198, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, S.D., Cho, Y.H., Sheen, J.: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. — Nat. Protocols 2: 1565–1572, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. 2nd Ed. — The International Rice Research Institute, Los Baños 1972.

    Google Scholar 

  • Yu, G., Hou, W., Du, X., Wang, L., Wu, H., Zhao, L., Kong, L., Wang, H.: Identification of wheat non-specific lipid transfer proteins involved in chilling tolerance. — Plant Cell Rep. 33: 1757–1766, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Yu, K., Soares, J.M., Mandal, M.K., Wang, C., Chanda, B., Gifford, A.N., Fowler, J.S., Navarre, D., Kachroo, A., Kachroo, P.: A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaicacid-induced systemic immunity. — Cell Rep. 3: 1266–1278, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Yubero-Serrano, E.M., Moyano, E., Medina-Escobar, N., Muñoz-Blanco, J., Caballero, J.L.: Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. — J. exp. Bot. 54: 1865–1877, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Zamani, S., Bybordi, A., Khorshidi, A., Nezami, T.: Effects of NaCl salinity levels on lipids and proteins of canola (Brassica napus L.) cultivars. — Adv. environ. Biol. 4: 397–403, 2010.

    CAS  Google Scholar 

  • Zhang, D., Liang, W., Yin, C., Zong, J., Gu, F.: OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. — Plant Physiol. 154: 49–162, 2010.

    Google Scholar 

  • Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., Wang, J., Wang, H.: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. — Plant Methods 7: 30–43, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-Y. Hong.

Additional information

Acknowledgments: We are grateful to the Joint Center for Instruments and Researches of the College of Bioresources and Agriculture at the National Taiwan University for confocal microscopy and technical support. This work was supported by a research grant (MOST 104-2313-B-002 -013 -MY3) from the Ministry of Science and Technology of Taiwan to C.-Y. Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KC., Wu, TM., Chandrika, N.N.P. et al. Molecular characterization and subcellular localization of salt-inducible lipid transfer proteins in rice. Biol Plant 61, 501–510 (2017). https://doi.org/10.1007/s10535-016-0671-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0671-x

Additional key words

Navigation