Log in

eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Environmental DNA (eDNA) metabarcoding is an evolving tool that can provide broader assessments of marine biodiversity than conventional visual census methods. The outputs of this approach are, therefore, crucial to provide data for conservation priorities and to support fisheries management. We conducted a study using eDNA metabarcoding to understand the distribution of marine biodiversity across Indonesia and to investigate the abundance of three major phyla that comprise a majority of marine biodiversity. In this study, a total of 13,819,634 reads corresponding to 23,252 unique sequences belonging to the phyla Chordata, Mollusca, and Echinodermata were generated from COI amplicons obtained from 92 seawater eDNA samples collected from nine locations and 17 sites. Beta diversity differed significantly across locations (PERMANOVA: p < 0.05) based on Bray–Curtis and Jaccard indices. Taxa of interest were not distributed equally and there were no discernible patterns detected across the sampling area. This might be due to the highly variable percentage of sequenced species between families, preventing robust estimation of species richness. Overall, 45% of reads were identified to species level while 55% were classified as unidentified taxa. Interestingly, the percentage of unidentified taxa was similar between two locations with distinct characteristics representing eastern and western extremities of the sampling region. Despite a relatively poor rate of assignment to species level, our results highlight unprecedented levels of marine biodiversity and strong differences in species composition. This further supports the contention that the eDNA approach is a sensitive method that can provide useful data, in particular to detect changes in species composition. Importantly, this method is clearly advantageous to evaluate marine biodiversity on a large scale and can provide data to support region-wide coral reef management strategies. Knowing species diversity and the degree to which various taxa are distributed is a fundamental for advancing our knowledge of marine ecology and can play an important role in forecasting population dynamics and evolution as well as in refining conservation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data are available in the electronic supplementary material.

References

  • Agostini VN, Grantham HS, Wilson J, Mangubhai S, Rotinsulu C, Hidayat N, Muljadi A, Muhajir MM, Darmawan A, Rumetna L, Erdmann MV (2012) Achieving fisheries and conservation objectives within marine protected areas: zoning the Raja Ampat network. The Nature Conservancy Indonesia Marine Program, Denpasar, Indonesia

    Google Scholar 

  • Alexander JB, Bunce M, White N, Wilkinson SP, Adam AA, Berry T, Stat M, Thomas L, Newman SJ, Dugal L, Richards ZT (2020) Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39(1):159–171

    Google Scholar 

  • Allen GR (2003) Coral reef fishes of the Raja Ampat Islands. Report on a rapid ecological assessment of the Raja Ampat Islands, Papua, Eastern Indonesia held October 30–November 22, 2002, p 42

  • Andersen KS, Kirkegaard RH, Karst, SM, Albertsen M (2018) Ampvis2: an R package to analyse and visualize 16S rRNA amplicon data, bioRxiv: p. 299537

  • Anzani L, Madduppa HH, Nurjaya IW, Dias PJ (2019) Molecular identification of white sea squirt didemnum sp. (Tunicata, Ascidiacea) colonies growing over corals in Raja Ampat Islands Indonesia. Biodivers J Biol Divers 20(3):636–642

    Google Scholar 

  • Arbi UY (2017) Kepadatan dan kondisi habitat kerang kima (Cardiidae: Tridacninae) di beberapa lokasi di Perairan Sulawesi Utara. BAWAL Widya Riset Perikanan Tangkap 3(2):139–148

    Google Scholar 

  • Ardura A, Zaiko A, Martinez JL, Samuiloviene A, Borrell Y, Garcia-Vazquez E (2015) Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water. J Molluscan Stud 81(4):495–501

    Google Scholar 

  • Ario R, Wibowo E, Pratikto I, Fajar S (2016) Turtle habitat conservation from threaten at turtle conservation and educatiuon center (TCEC). Bali Jurnal Kelautan Tropis 19(1):60–68

    Google Scholar 

  • Ballantine B (2014) Fifty years on: lessons from marine reserves in New Zealand and principles for a worldwide network. Biol Cons 176:297–307

    Google Scholar 

  • Baltazar-Soares M, Pinder AC, Harrison AJ, Oliver W, Picken J, Britton JR, Andreou D (2020) A non-invasive eDNA tool for detecting sea lamprey larvae in river sediments: analytical validation and field testing in a low abundance ecosystem, bioRxiv.

  • Beasley I, Pollock K, Jefferson TA, Arnold P, Morse L, Yim S, Lor Kim S, Marsh H (2013) Likely future extirpation of another Asian river dolphin: the critically endangered population of the Irrawaddy dolphin in the Mekong River is small and declining. Mar Mamm Sci 29(3):E226–E252

    Google Scholar 

  • Beer AJE (2015) Diversity and abundance of sharks in no-take and fished sites in the marine protected area network of Raja Ampat, West Papua, Indonesia, using baited remote underwater video (BRUVs). Royal Roads University, Canada

    Google Scholar 

  • Beger M, Jones GP, Munday PL (2003) Conservation of coral reef biodiversity: a comparison of reserve selection procedures for corals and fishes. Biol Cons 111(1):53–62

    Google Scholar 

  • Beger M, McGowan J, Treml EA, Green AL, White AT, Wolff NH, Klein CJ, Mumby PJ, Possingham HP (2015) Integrating regional conservation priorities for multiple objectives into national policy. Nat Commun 6:8208

    CAS  PubMed  Google Scholar 

  • Berry TE, Saunders BJ, Coghlan ML, Stat M, Jarman S, Richardson AJ, Davies CH, Berry O, Harvey ES, Bunce M (2019) Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet 15(2):e1007943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bin Othman AS, Goh GHS, Todd PA (2010) The distribution and status of giant clams (Family Tridacnidae)—a short review. Raffles Bull Zool 58(1):103–111

    Google Scholar 

  • Bogich TL, Liebhold AM, Shea K (2008) To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J Appl Ecol 45(4):1134–1142

    Google Scholar 

  • Borsa P, Fauvelot C, Andréfouët S, Chai TT, Kubo H, Liu LL (2015) On the validity of Noah’s giant clam Tridacna noae (Röding, 1798) and its synonymy with Ningaloo giant clam Tridacna ningaloo Penny and Willan, 2014. Raffles Bull Zool 63:484–489

    Google Scholar 

  • Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L (2018) Environmental DNA illuminates the dark diversity of sharks. Sci Adv 4(5):eaap9661

    PubMed  PubMed Central  Google Scholar 

  • Brooks T (2010) Conservation planning and priorities. Conservation biology for all, pp 199–219

  • Burke L, Reytar K, Spalding K, Perry A (2012) Reefs at risk revisited in the coral triangle: world resources institute. In The nature conservancy. World-Fish Center, International Coral Reef Action Network. UNEP world conservation monitoring centre and global coral reef monitoring network Washington, DC

  • Burke L, Selig L (2002) Reefs at risk in Southeast Asia. World resource institute, Washington

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Closek CJ, Santora JA, Starks HA, Schroeder ID, Andruszkiewicz EA, Sakuma KM, Bograd SJ, Hazen EL, Field JC, Boehm AB (2019) Marine vertebrate biodiversity and distribution within the central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front Mar Sci 6:732

    Google Scholar 

  • Cleary DFR, Polónia ARM, Renema W, Hoeksema BW, Rachello-Dolmen PG, Moolenbeek RG, Budiyanto A, Tuti Y, Draisma SGA, Prud’homme van Reine WF, Hariyanto R (2016) Variation in the composition of corals, fishes, sponges, echinoderms, ascidians, molluscs, foraminifera and macroalgae across a pronounced in-to-offshore environmental gradient in the Jakarta Bay-Thousand Islands coral reef complex. Mar Pollut Bull 110(2):701–717

    CAS  PubMed  Google Scholar 

  • Clusa L, Miralles L, Basanta A, Escot C, Garcia-Vazquez E (2017) eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PLoS ONE 12(11):e0188126

    PubMed  PubMed Central  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311(5760):522–527

    CAS  PubMed  Google Scholar 

  • Cox K, Bright J (2017) Raja ampat: a biodiversity hot spot and the future of marine conservation. Fisheries 42(9):462–467

    Google Scholar 

  • Cristescu ME, Hebert PD (2018) Uses and misuses of environmental DNA in biodiversity science and conservation. Annu Rev Ecol Evol Syst 49:209–230

    Google Scholar 

  • Curd EE, Gold Z, Kandlikar GS, Gomer J, Ogden M, O’Connell T, Pipes L, Schweizer TM, Rabichow L, Lin M, Shi B (2019) Anacapa Toolkit: an environmental DNA toolkit for processing multilocus metabarcode datasets. Methods Ecol Evol 10(9):1469–1475

    Google Scholar 

  • DeBoer TS, Subia MD, Ambariyanto EMV, Kovitvongsa K, Barber PH (2008) Phylogeography and limited genetic connectivity in the endangered boring giant clam across the coral triangle. Conserv Biol 22(5):1255–1266

    PubMed  Google Scholar 

  • Deiner K, Walser JC, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Cons 183:53–63

    Google Scholar 

  • Dias PJ, Gilg MR, Lukehurst SS, Kennington WJ, Huhn M, Madduppa HH, McKirdy SJ, de Lestang P, Teo SL, Lee SSC, McDonald JI (2018) Genetic diversity of a hitchhiker and prized food source in the Anthropocene: the Asian green mussel Perna viridis (Mollusca, Mytilidae). Biol Invasions 20(7):1749–1770

    Google Scholar 

  • DiBattista JD, Reimer JD, Stat M, Masucci GD, Biondi P, De Brauwer M, Bunce M (2019) Digging for DNA at depth: rapid universal metabarcoding surveys (RUMS) as a tool to detect coral reef biodiversity across a depth gradient. PeerJ 7:e6379

    PubMed  PubMed Central  Google Scholar 

  • DiBattista JD, Reimer JD, Stat M, Masucci GD, Biondi P, De Brauwer M, Wilkinson SP, Chariton AA, Bunce M (2020) Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci Rep 10(1):1–15

    Google Scholar 

  • Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, Banks S, Barrett NS, Becerro MA, Bernard AT, Berkhout J, Buxton CD (2014) Global conservation outcomes depend on marine protected areas with five key features. Nature 506(7487):216–220

    CAS  PubMed  Google Scholar 

  • Ender AI, Mangubhai S, Wilson JR, Muljadi A (2014) Cetaceans in the global centre of marine biodiversity. Marine Biodivers Records 7:1–9

    Google Scholar 

  • Erdmann MV, Pet JS (2002) A rapid marine survey of the northern Raja Ampat Islands. Report from Henry Foundation/The Nature Conservancy/NRM/EPIQ

  • Evans NT, Lamberti GA (2018) Freshwater fisheries assessment using environmental DNA: a primer on the method, its potential, and shortcomings as a conservation tool. Fish Res 197:60–66

    Google Scholar 

  • Evans NT, Shirey PD, Wieringa JG, Mahon AR, Lamberti GA (2017) Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42(2):90–99

    Google Scholar 

  • Fahmi (2010) Shark and rays in Indonesia. Mar Res Indones 22(4):225–242

    Google Scholar 

  • Fenner D (2002) Reef corals of the Raja Ampat Islands, Papua Province, Indonesia. Part II. comparison of individual survey sites. Appendix 2. coral species recorded at individual sites in the Raja Ampat Islands. A marine rapid assessment of the Raja Ampat Islands, Papua Province, Indonesia. RAP Bull Biol Assessment 22:29–36

    Google Scholar 

  • Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE, Caley MJ (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25(4):500–505

    CAS  PubMed  Google Scholar 

  • Fukumoto S, Ushimaru A, Minamoto T (2015) A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. J Appl Ecol 52(2):358–365

    CAS  Google Scholar 

  • Gao X, Lin H, Revanna K, Dong Q (2017) A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinform 18(1):247

    Google Scholar 

  • Garlapati D, Charankumar B, Ramu K, Madeswaran P, Murthy MR (2019) A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev Environ Sci BioTechnol 18(3):389–411

    CAS  Google Scholar 

  • Grassle JF, Lassere P, McIntyre AD, Ray GC (1991) Marine biodiversity and ecosystem function. Biol Int Special 23:1–9

    Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6(1):153–175

    Google Scholar 

  • Gray JS (2001) Marine diversity: the paradigms in patterns of species richness examined. Sci Mar 65(S2):41–56

    Google Scholar 

  • Günther B, Knebelsberger T, Neumann H, Laakmann S, Arbizu PM (2018) Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci Rep 8(1):1–13

    Google Scholar 

  • Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig ER, Selkoe KA, Walbridge S (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6(1):1–7

    Google Scholar 

  • Hamdani B (2018) Threats, challenges and opportunities to marine protected areas in the coral triangle area: a case study of Indonesia sea

  • Hamilton RJ, Potuku T, Montambault JR (2011) Community-based conservation results in the recovery of reef fish spawning aggregations in the coral triangle. Biol Cons 144(6):1850–1858

    Google Scholar 

  • Hart T (2003) Rules of engagement for conservation lessons from the democratic republic of congo. Conserv Pract 4(1):14–22

    Google Scholar 

  • Hernawan UE (2010) Study on giant clams (Cardiidae) population in Kei Kecil waters Southeast-Maluku. Widyariset 13(3):101–108

    Google Scholar 

  • Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. MEPS 495:291–298. https://doi.org/10.3354/meps10597

    Article  Google Scholar 

  • Hoeksema BW (2012) Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). ZooKeys 228:21

    Google Scholar 

  • Hoeksema BW (2017) The hidden biodiversity of tropical coral reefs. Biodiversity 18(1):8–12

    Google Scholar 

  • Holman LE, Hollenbeck CM, Ashton TJ, Johnston IA (2019) Demonstration of the use of environmental DNA (eDNA) for the non-invasive genoty** of a bivalve mollusc, the European Flat Oyster (Ostrea edulis). Front Genet 10:1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Bellwood DR, Connolly SR (2002) Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol Lett 5(6):775–784

    Google Scholar 

  • Huhn M, Madduppa HH, Khair M, Sabrian A, Irawati Y, Anggraini NP, Wilkinson SP, Simpson T, Iwasaki K, Setiamarga DH, Dias PJ (2020) Kee** up with introduced marine species at a remote biodiversity hotspot: awareness, training and collaboration across different sectors is key. Biol Invasions 22(2):749–771

    Google Scholar 

  • Hukom FD, Yulianda F, Bengen DG, Kamal MM (2018) Reef fishes in the marine protected area of Dampier strait, Raja Ampat Islands, West Papua Province, Indonesia. Int J Fisheries Aqua Stud 6(6):131–135

    Google Scholar 

  • Irei Y, Sinniger F, Reimer JD (2015) Descriptions of two azooxanthellate Palythoa species (subclass Hexacorallia, order Zoantharia) from the Ryukyu Archipelago, southern Japan. ZooKeys 478:1–26

    Google Scholar 

  • IUCN (2021) The IUCN red list of threatened species. Version 2021-1. Available at: www.iucnredlist.org. Accessed 1 June 2021

  • Jaiteh VF, Loneragan NR, Warren C (2017) The end of shark finning? Impacts of declining catches and fin demand on coastal community livelihoods. Mar Policy 82:224–233

    Google Scholar 

  • Jefferson TA, Karczmarski L, Kreb D, Laidre K, O’Corry-Crowe G, Reeves R, Rojas-Bracho L, Secchi E, Slooten E, Smith BD, Wang JY, Zhou K (2008) Orcaella brevirostris (Mahakam River subpopulation) (errata version published in 2016). The IUCN Red List of Threatened Species 2008: e.T39428A98842174

  • Juhel JB, Utama RS, Marques V, Vimono IB, Sugeha HY (1930) Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc R Soc B 287:20200248

    Google Scholar 

  • Khalifa MA, Kamal MM, Adiwilaga EM, Sunuddin A (2014) Preliminary study on the distribution of irrawaddy dolphin, Orcaella brevirostris, in Banten Bay. Open J Marine Sci 4(04):338–343

    Google Scholar 

  • Khasanah M, Kadir NN, Jompa J (2019) Reproductive biology of three important threatened/near-threatened groupers (Plectropomus leopardus, Epinephelus polyphekadion and Plectropomus areolatus) in Eastern Indonesia and implications for management. Animals 9(643):1–18

    Google Scholar 

  • Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Riginos C, Treml EA, Mumby PJ (2017) Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol Appl 27(3):925–941

    PubMed  Google Scholar 

  • Kasanah M, Nurdin N, Sadovy de Mitcheson Y, Jompa J (2019) Management of the grouper export trade in Indonesia. Rev Fish Sci Aquac 28(1):1–15

    Google Scholar 

  • Kise H, Reimer JD (2016) Unexpected diversity and a new species of Epizoanthus (Anthozoa, Hexacorallia) attached to eunicid worm tubes from the Pacific Ocean. ZooKeys 562:49–71

    Google Scholar 

  • Kochzius M, Nuryanto A (2008) Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity. Mol Ecol 17(17):3775–3787

    CAS  PubMed  Google Scholar 

  • Kool JT, Paris CB, Barber PH, Cowen RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities. Glob Ecol Biogeogr 20(5):695–706

    Google Scholar 

  • Kreb D (1999) Facultative river dolphins: conservation and social ecology of freshwater and coastal Irrawaddy. University of Amsterdam, Thesis

    Google Scholar 

  • Lane DJ, Marsh LM, VandenSpiegel D, Rowe FW (2000) Echinoderm fauna of the South China Sea: an inventory and analysis of distribution patterns. Raffles Bull Zool 48:459–494

    Google Scholar 

  • Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10(1):34

    PubMed  PubMed Central  Google Scholar 

  • Madduppa HH, Bahri S, Subhan B, Anggraini NP, Ohoiulun H, Abdillah T, Arafat D, Santoso P, Sangadji IM (2019) DNA barcoding of sea turtles (Dermochelyidae and Cheloniidae) and its protocol using different tissues quality: implication to conservation managers. IOP Conf Series Earth Environ Sci 278(1):012041

    Google Scholar 

  • Madduppa H, Putri AS, Wicaksono RZ, Subhan B, Akbar N, Ismail F, Arafat D, Prabuning D, Sani LMI, Srimariana ES, Baksir A (2020) Morphometric and DNA Barcoding of endemic Halmaheran walking shark (Hemiscyllium halmahera, Allen, 2013) in North Maluku Indonesia. Biodiv J Biol Div 21(7):3331–3342

    Google Scholar 

  • Madduppa H, Subhan B, Anggraini NP, Fadillah R, Tarman K (2017) DNA barcoding reveals vulnerable and not evaluated species of sea cucumbers (Holothuroidea and Stichopodidae) from Kepulauan Seribu reefs Indonesia. Biodiv J Biol Div 18(3):893–898

    Google Scholar 

  • Madduppa HH, Subhan B, Suparyani E, Siregar AM, Arafat D, Tarigan SA, Alimuddin A, Khairudi D, Rahmawati F, Brahmandito A (2013) Dynamics of fish diversity across an environmental gradient in the Seribu Islands reefs off Jakarta. Biodivers J Biol Div 14(1):17–24

    Google Scholar 

  • Madduppa HH, Timm J, Kochzius M (2014) Interspecific, spatial and temporal variability of self-recruitment in anemonefishes. PLoS ONE 9(2):e90648

    PubMed  PubMed Central  Google Scholar 

  • Maggioni D, Montano S, Arrigoni R, Galli P, Puce S, Pica D, Berumen ML (2017) Genetic diversity of the Acropora-associated hydrozoans: new insight from the Red Sea. Mar Biodivers 47(4):1045–1055

    Google Scholar 

  • Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T (2014) The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9(12):e114639

    PubMed  PubMed Central  Google Scholar 

  • McKenna SA, Allen GR, Suryadi S (2002) A marine rapid assessment of the Raja Ampat islands, Papua Province, Indonesia. Conservation International, Center for Applied Biodiversity Science, Department of Conservation Biology

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meesters E, Knijn R, Willemsen P, Pennartz R, Roebers G, van Soest RV (1991) Sub-rubble communities of Curaçao and Bonaire coral reefs. Coral Reefs 10(4):189–197

    Google Scholar 

  • Minton G, Smith BD, Braulik GT, Kreb D, Sutaria D, Reeves R (2017). Orcaella brevirostris (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15419A123790805. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15419A50367860.en.

  • Montano S, Seveso D, Galli P, Puce S, Hoeksema BW (2015) Mushroom corals as newly recorded hosts of the hydrozoan symbiont Zanclea sp. Mar Biol Res 11(7):773–779

    Google Scholar 

  • Mous PJ, Pet JS, Arifin Z, Djohani R, Erdmann MV, Halim A, Knight M, Pet-Soede L, Wiadnya G (2005) Policy needs to improve marine capture fisheries management and to define a role for marine protected areas in Indonesia. Fish Manage Ecol 12(4):259–268

    Google Scholar 

  • Mustika PL, Ratha I (2013) Towards the bali MPA network. In Bali Marine Rapid Assessment Program 2011. Conservation International

  • Neo ML, Low JK (2018) First observations of Tridacna noae (Röding, 1798) (Bivalvia: Heterodonta: Cardiidae) in christmas island (Indian Ocean). Mar Biodivers 48(4):2183–2185

    Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):355–364

    Google Scholar 

  • Nijman V (2019) Wildlife trade, CITES and the protection of marine molluscs in Indonesia. Molluscan Res 39(3):195–204

    Google Scholar 

  • Nuryanto A, Kochzius M (2009) Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral Reefs 28(3):607–619

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin .R, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2018) Vegan: ecological diversity R package, Version 2.5-4

  • Oktaviani D, Aisyah A, Dharmadi D (2007) Pemantauan status populasi pesut (Orcaella brevirostris) di sungai pella (Daerah Aliran Sungai Mahakam), kalimantan timur. BAWAL Widya Riset Perikanan Tangkap 1(6):209–214

    Google Scholar 

  • Palumbi SR (2001) The ecology of marine protected areas. Marine ecology, the new synthesis 509–530

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13(sp1):146–158

    Google Scholar 

  • Pasaribu BP (1988) Status of giant clams in Indonesia. Giant clams in Asia and the Pacific. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Patantis G, Rahmadara G, Elfidasari D, Chasanah E (2013) Molecular identification of sponges obtained from Seribu Islands National Park and their associated bacteria. Squalen Bull Marine and Fish Postharvest Biotechnol 8(1):29–36

    Google Scholar 

  • Péron C, Grémillet D, Prudor A, Pettex E, Saraux C, Soriano-Redondo A, Authier M, Fort J (2013) Importance of coastal marine protected areas for the conservation of pelagic seabirds: the case of Vulnerable yelkouan shearwaters in the Mediterranean Sea. Biol Cons 168:210–221

    Google Scholar 

  • Polónia AR, Cleary DF, Duarte LN, de Voogd NJ, Gomes NC (2014) Composition of Archaea in seawater, sediment, and sponges in the Kepulauan Seribu reef system Indonesia. Microbial Ecol 67(3):553–567

    Google Scholar 

  • Porter TM, Hajibabaei M (2018) Automated high throughput animal CO1 metabarcode classification. Sci Rep 8(1):1–10

    Google Scholar 

  • Rachello-Dolmen PG, Cleary DFR (2007) Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuar Coast Shelf Sci 73(3–4):816–826

    Google Scholar 

  • Rachman A (2020) Checklist and estimation of total number of phytoplankton species in Pari, Tidung, and Payung Islands Indonesia. Biodivers J Biol Div 21(6):2446–2458

    Google Scholar 

  • Raghukumar S, Anil AC (2003) Marine biodiversity and ecosystem functioning: a perspective. Curr Sci 84(7):884–892

    Google Scholar 

  • Ratcliffe FC, Uren Webster TM, Garcia de Leaniz C, Consuegra S (2020) A drop in the ocean: monitoring fish communities in spawning areas using environmental DNA. Environ DNA 3(1):43–54

    Google Scholar 

  • Regan HM, Hierl LA, Franklin J, Deutschman DH, Schmalbach HL, Winchell CS, Johnson BS (2008) Species prioritization for monitoring and management in regional multiple species conservation plans. Divers Distrib 14(3):462–471

    PubMed  Google Scholar 

  • Reitner J, Wörheide G, Thiel V, Gautret P (1996) Reef caves and cryptic habitats of Indo-Pacific reefs—distribution patterns of coralline sponges and microbialites. Gott Arb Geol Palaont 2:91–100

    Google Scholar 

  • Reksodihardjo-Lilley G, Lilley R (2007) Towards a sustainable marine aquarium trade: an Indonesian perspective. SPC Live Reef Fish Inform Bull 17:11–19

    Google Scholar 

  • Roff G, Doropoulos C, Rogers A, Bozec YM, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ (2016) The ecological role of sharks on coral reefs. Trends Ecol Evol 31(5):395–407

    PubMed  Google Scholar 

  • Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecol Conserv 17:e00547

    Google Scholar 

  • Russ GR, Alcala AC (2010) Decadal-scale rebuilding of predator biomass in Philippine marine reserves. Oecologia 163(4):1103–1106

    PubMed  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011) Connectivity Dominates Larval Replenishment in a Coastal Reef Fish Metapopulation. Proc Royal Soc B Biol Sci 278(1720):2954–2961

    Google Scholar 

  • Sembiring A, Pertiwi NPD, Mahardini A, Wulandari R, Kurniasih EM, Kuncoro AW, Cahyani ND, Anggoro AW, Ulfa M, Madduppa H, Carpenter KE (2015) DNA barcoding reveals targeted fisheries for endangered sharks in Indonesia. Fish Res 164:130–134

    Google Scholar 

  • Setyastuti A, Wirawati I (2008) The banda sea: a hotspot of deep-sea echinoderms diversity in Indonesia. IOP Conf Ser Earth Environ 184:012003

    Google Scholar 

  • Shaw JL, Clarke LJ, Wedderburn SD, Barnes TC, Weyrich LS, Cooper A (2016) Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol Cons 197:131–138

    Google Scholar 

  • Smart AS, Tingley R, Weeks AR, Van Rooyen AR, McCarthy MA (2015) Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecol Appl 25(7):1944–1952

    PubMed  Google Scholar 

  • Smith AD, Garcia SM (2014) Fishery management: contrasts in the Mediterranean and the Atlantic. Curr Biol 24(17):R810–R812

    CAS  PubMed  Google Scholar 

  • Spalding M (2010) World atlas of mangroves. Routledge

    Google Scholar 

  • Spalding M, Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press

    Google Scholar 

  • Stanley SM (2007) An analysis of the history of marine animal diversity. Paleobiology 33:1–55

    Google Scholar 

  • Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, Harvey ES, Bunce M (2017) Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep 7(1):1–11

    CAS  Google Scholar 

  • Strong JA, Andonegi E, Bizsel KC, Danovaro R, Elliott M, Franco A, Garces E, Little S, Mazik K, Moncheva S, Papadopoulou N (2015) Marine biodiversity and ecosystem function relationships: the potential for practical monitoring applications. Estuar Coast Shelf Sci 161:46–64

    Google Scholar 

  • Subhan B, Arafat D, Rahmawati F, Dasmasela YH, Royhan QM, Madduppa H, Santoso P, Prabowo B (2020) Coral disease at Mansuar Island, Raja Ampat, Indonesia. IOP Conf Series Earth Environ Sci 429(1):012027

    Google Scholar 

  • Supono, Lane DJ, Susetiono (2014) Echinoderm fauna of the Lembeh Strait, North Sulawesi: inventory and distribution review. Marine Res Indones 39(2):51–611

    Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21(8):2045–2050

    CAS  PubMed  Google Scholar 

  • Takeuchi A, Iijima T, Kakuzen W, Watanabe S, Yamada Y, Okamura A, Horie N, Mikawa N, Miller MJ, Kojima T, Tsukamoto K (2019) Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Sci Rep 9(1):1–9

    Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol Cons 183:4–18

    Google Scholar 

  • Timm J, Kochzius M, Madduppa HH, Neuhaus AI, Dohna T (2017) Small scale genetic population structure of coral reef organisms in Spermonde Archipelago Indonesia. Front Marine Sci 4:294

    Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466(7310):1098–1101

    CAS  PubMed  Google Scholar 

  • Tornabene L, Valdez S, Erdmann MV, Pezold FL (2016) Multi-locus sequence data reveal a new species of coral reef goby (Teleostei: Gobiidae: Eviota), and evidence of Pliocene vicariance across the Coral Triangle. J Fish Biol 88(5):1811–1834

    CAS  PubMed  Google Scholar 

  • Treml EA, Roberts J, Halpin PN, Possingham HP, Riginos C (2015) The emergent geography of biophysical dispersal barriers across the Indo-West Pacific. Divers Distrib 21(4):465–476

    Google Scholar 

  • Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52(4):525–537

    PubMed  Google Scholar 

  • Turak E, Souhoka J (2003) Coral diversity and the status of coral reefs in the Raja Ampat Islands. In: Report on a rapid ecological assessment of the Raja Ampat Islands, Papua, Pastern Indonesia held, vol 30. pp 59–83

  • Utami RT, Zamani NP, Madduppa HH (2018) Molecular identification, abundance and distribution of the coral-killing sponge Terpios hoshinota in Bengkulu and Seribu Islands Indonesia. Biodiver J Biol Divers 19(6):2238–2246

    Google Scholar 

  • Valdez-Moreno M, Ivanova NV, Elías-Gutiérrez M, Pedersen SL, Bessonov K, Hebert PDN (2019) Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PlosOne. https://doi.org/10.1371/journal.pone.0215505

    Article  Google Scholar 

  • Venter O, Fuller RA, Segan DB, Carwardine J, Brooks T, Butchart SH, Di Marco M, Iwamura T, Joseph L, O’Grady D, Possingham HP (2014) Targeting global protected area expansion for imperilled biodiversity. PLoS Biol 12(6):e1001891

    PubMed  PubMed Central  Google Scholar 

  • Veron JE, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N (2009) Delineating the coral triangle. Galaxea J Coral Reef Stud 11(2):91–100

    Google Scholar 

  • Vicente J, Zea S, Hill RT (2016) Sponge epizoism in the Caribbean and the discovery of new Plakortis and Haliclona species, and polymorphism of Xestospongia deweerdtae (Porifera). Zootaxa 4178(2):209–233

    PubMed  Google Scholar 

  • Wells S (1997) Giant clams: status, trade and mariculture, and the role of CITES in management. IUCN/SSC Wildlife Trade Programme, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • West KM, Stat M, Harvey ES, Skepper CL, DiBattista JD, Richards ZT, Travers MJ, Newman SJ, Bunce M (2020) eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol Ecol 29(6):1069–1086

    CAS  PubMed  Google Scholar 

  • White WT, Last PR, Stevens JD, Yearsley GK, Fahmi D (2006) Economically important sharks and rays of Indonesia. Lamb Print, Perth

    Google Scholar 

  • Wiadnya DG, Syafaat R, Susilo E, Setyohadi D, Arifin Z, Wiryawan B (2011) Recent development of marine protected areas (MPAs) in Indonesia: policies and governance. J Appl Environ Biol Sci 1(12):608–613

    Google Scholar 

  • Wickham H (2009) Elegant graphics for data analysis (ggplot2). Springer

    Google Scholar 

  • Williams SE, Williams YM, VanDerWal J, Isaac JL, Shoo LP, Johnson CN (2009) Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proc Natl Acad Sci 106(Supplement 2):19737–19741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson DH, Harrison HB, Almany GR, Berumen ML, Bode M, Bonin MC, Choukroun S, Doherty PJ, Frisch AJ, Saenz-Agudelo P, Jones GP (2016) Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park. Mol Ecol 25(24):6039–6054

    PubMed  Google Scholar 

  • Yusuf S, Moore AM (2020) Hunting in the seas: population status and community perspectives on giant clams (Tridacnidae) and Napoleon wrasse (Cheilinus undulatus), endangered marine taxa of the Wallacea Region, Indonesia. IOP Conf Series Earth Environ Sci 473:012061. https://doi.org/10.1088/1755-1315/473/1/012061

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Research and Technology (Ristek/BRIN) for supporting the research entitled “Population genomics to estimate distribution pattern and larval distances of economically fish using environmental DNA to support food security and fisheries conservation”; the Institute of Research and Community Service (LPPM) IPB University for undertaking the research administration; the Laboratory of Marine Biodiversity and Biosystematics IPB University, Scientific Diving Laboratory IPB University, and Oceanogen Laboklinikum for the use of their research logistics and facilities.

Funding

This study was funded by the Ministry of Research and Technology (Ristek/BRIN) through a grant to Hawis Madduppa under Agreement No. 3988/IT3.L1/PN/2020.

Author information

Authors and Affiliations

Authors

Contributions

HM conceived the research idea; HM, BS and DGB designed the methodology; HM, DA, EJ, LMIS, NA and BS collected field data; HM and LMIS performed laboratorium analysis; HM, NKDC, AWA performed all statistical analyses; HM led the writing of the manuscript. DGB helped with statistical advice, edited and improved the manuscript together with NKDC, AWA, and LMIS. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hawis Madduppa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures followed the guidelines of the Ministry of Research and Technology (Ristek/BRIN) under Agreement No. 3988/IT3.L1/PN/2020. The research was approved by the ethical committee at the Institute of Research and Community Service (LPPM) IPB University prior to the research agreement.

Additional information

Communicated by Angus Jackson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Coastal and marine biodiversity

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madduppa, H., Cahyani, N.K.D., Anggoro, A.W. et al. eDNA metabarcoding illuminates species diversity and composition of three phyla (chordata, mollusca and echinodermata) across Indonesian coral reefs. Biodivers Conserv 30, 3087–3114 (2021). https://doi.org/10.1007/s10531-021-02237-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02237-0

Keywords

Navigation