Log in

Seismic fragility curves for the Italian RC residential buildings based on non-linear dynamic analyses

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2023

This article has been updated

Abstract

In the present paper, Fragility Curves (FCs) of Reinforced Concrete (RC) building types with moment-resisting frame structure representative of the existing Italian building stock have been derived through an analytical approach. The proposed methodology is based on Non-Linear Dynamic Analyses encompassing all the steps required to bring about reliable as well realistic fragility results. First, prototype building types have been selected by considering the main attributes affecting the seismic vulnerability of existing RC buildings, that is: age of construction (i.e. ‘50 s, ‘70 s and ‘90 s), number of storeys (i.e. 2, 4 and 6 storeys), arrangement in elevation of infills (i.e. Bare-, Infilled-, Pilotis-frame) and design level (i.e. seismic or gravity loads). A simulated design has been used for detailing the building types at hand, whose non-linear dynamic response has been computed by using a large set of signals. The signals have been purposely selected in order to approach the elastic design spectra provided in the Italian seismic code for different return periods, being able to take into account also record-to-record variability and soil-amplification effects. A specific relationship between the considered engineering demand parameter (i.e. inter-storey drift ratio) and all damage levels proposed in the EMS-98 scale have been defined on the basis of empirical data and expert judgement. A set of FCs in terms of peak ground acceleration are finally derived and compared to point out the role of the considered vulnerability attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The selected signals are freely available at www.reluis.it.

Change history

References

  • Aslani H, Miranda E (2005) Probability-based seismic response analysis. Eng Struct 27(2005):1151–1163

    Article  Google Scholar 

  • Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31(1):579–599

    Article  Google Scholar 

  • Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. J Earthq Eng 8:43–91

    Article  Google Scholar 

  • Borzi B, Faravelli M, Di Meo A (2021) Application of the SP-BELA methodology to RC residential buildings in Italy to produce seismic risk maps for the national risk assessment. Bull Earthq Eng 19:3185–3208. https://doi.org/10.1007/s10518-020-00953-6

    Article  Google Scholar 

  • Braga F, Manfredi V, Masi A et al (2011) Performance of non-structural elements in RC buildings during the L’Aquila, 2009 earthquake. Bull Earthq Eng 9:307–324. https://doi.org/10.1007/s10518-010-9205-7

    Article  Google Scholar 

  • Calvi GM, Bolognini D (2001) Seismic response of reinforced concrete frames infilled with weakly reinforced masonry panels. J Earthq Eng 5(2):153–185

    Article  Google Scholar 

  • Calvi GM, Pinho R (2004) LESSLOSS, a European integrated project on risk mitigation for earthquakes and landslides. Research report ROSE 2004/02. IUSS Press, ISBN: 88-7358-020-3

  • Calvi GM, Pinho R, Magenes G, Bommer JJ, Restrepo-Vélez LF, Crowley H (2006) Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J Earthq Technol 43(3):75–104

    Google Scholar 

  • Cardone D, Perrone G (2015) Develo** fragility curves and loss functions for masonry infill walls. Earthq Struct 9(1):257–279

    Article  Google Scholar 

  • Celik OC, Ellingwood BR (2009) Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions. J Struct Eng (ASCE) 135(4):414–424

    Article  Google Scholar 

  • Cornell CA, Jalayer F, Hamburger RO, Foutch DA (2002) Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. J Struct Eng (ASCE) 128(4):526–533

    Article  Google Scholar 

  • Corrado V, Ballarini I, Corgnati SP (2014) Building typology Broshure–Italy, Politecnico di Torino—Dipartimento Energia, Gruppo di Ricerca TEBE, ISBN: 978-88-8202-065-1. (in Italian) Available at www.episcope.eu

  • D’Ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T (2015) Guidelines for analytical vulnerability assessment—low/mid-rise, vulnerability global component project (available at www.globalquakemodel.org)

  • De Risi MT, Del Gaudio C, Ricci P, Verderame GM (2018) In-plane behaviour and damage assessment of masonry infills with hollow clay bricks in RC frames. Eng Struct 168:257–275

    Article  Google Scholar 

  • De Risi MT, Di Domenico M, Manfredi V, Terrenzi M, Camata G, Mollaioli F, Noto F, Ricci P, Franchin P, Masi A, Spacone E, Verderame GM (2022) Modelling and seismic response analysis of Italian pre-code and low-code reinforced concrete buildings. Part I: bare frames. J Earthq Eng. https://doi.org/10.1080/13632469.2022.2074919

    Article  Google Scholar 

  • Decanini LD and Fantin GE (1986) Modelos simplificados de la mampostería incluidas en porticos. Características de rigidez y resistencia lateral en estado límite, Actas de las VI Jornadas Argentinas de Ingenieria Estructural, vol 2, October 1–3, Buenos Aires, Argentina, pp 817–836 (in Spanish)

  • Del Gaudio C, Ricci P, Verderame GM, Manfredi G (2015) Development and urban-scale application of a simplified method for seismic fragility assessment of RC buildings. Eng Struct 91:40–57. https://doi.org/10.1016/j.engstruct.2015.01.031

    Article  Google Scholar 

  • Del Gaudio C, Ricci P, Verderame GM (2018) A class-oriented mechanical approach for seismic damage assessment of RC buildings subjected to the 2009 L’Aquila earthquake. Bull Earthq Eng 16:4581–4605. https://doi.org/10.1007/s10518-018-0365-1

    Article  Google Scholar 

  • Del Gaudio C, De Risi MT, Ricci P, Verderame GM (2019) Empirical drift-fragility functions and loss estimation for infills in reinforced concrete frames under seismic loading. Bull Earthq Eng 17:1285–1330. https://doi.org/10.1007/s10518-018-0501-y

    Article  Google Scholar 

  • Del Gaudio C, Di Ludovico M, Polese M, Manfredi G, Prota A, Ricci P, Verderame GM (2020) Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bull Earthq Eng 18:4547–4548. https://doi.org/10.1007/s10518-020-00890-4

    Article  Google Scholar 

  • Di Ludovico M, Digrisolo A, Moroni C et al (2019) Remarks on damage and response of school buildings after the Central Italy earthquake sequence. Bull Earthq Eng 17:5679–5700. https://doi.org/10.1007/s10518-018-0332-x

    Article  Google Scholar 

  • Di Domenico M, De Risi MT, Manfredi V, Terrenzi M, Camata G, Mollaioli F, Noto F, Ricci P, Franchin P, Masi A, Spacone E, Verderame GM (2022) Modelling and seismic response analysis of Italian pre-code and low-code reinforced concrete buildings. Part II: infilled frames. J Earthq Eng. https://doi.org/10.1080/13632469.2022.2086189

    Article  Google Scholar 

  • Dolce M, Goretti A (2015) Building damage assessment after the 2009 Abruzzi earthquake. Bull Earthq Eng 13:2241–2264

    Article  Google Scholar 

  • Dolce M, Masi A, Marino M, Vona M (2003) Earthquake damage scenarios of the building stock of Potenza (Southern Italy) including site effects. Bull Earthq Eng 1(1):115–140

    Article  Google Scholar 

  • Dolce M, Speranza E, Giordano F, Borzi B, Bocchi F, Conte C, Di Meo A, Faravelli M, Pascale V (2019) Observed damage database of past Italian earthquakes: the Da. DO WebGIS. Boll Geofis Teor Appl 60(2):141–164

    Google Scholar 

  • Dolce M, Prota A, Borzi B, da Porto F, Lagomarsino S, Magenes G, Moroni C, Penna A, Polese M, Speranza E, Verderame GM, Zuccaro G (2021) Seismic Risk Assessment of residential buildings in Italy. Bull Earthq Eng 19:2999–3032. https://doi.org/10.1007/s10518-020-01009-5

    Article  Google Scholar 

  • Dolšek M, Fajfar P (2001) Soft storey effects in uniformly infilled reinforced concrete frames. J Earthq Eng 5:1–12

    Article  Google Scholar 

  • Du W, Ning C-L, Wang G (2019) The effect of amplitude scaling limits on conditional spectrum-based ground motion selection. Earthq Eng Struct Dyn 48(9):1030–1044. https://doi.org/10.1002/eqe.3173

    Article  Google Scholar 

  • Ebrahimian H, Jalayer F, Lucchini A et al (2015) Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bull Earthq Eng 13:2805–2840. https://doi.org/10.1007/s10518-015-9755-9

    Article  Google Scholar 

  • Ellingwood BR, Celik OC, Kinali K (2007) Fragility assessment of building structural systems in Mid-America. Earthq Eng Struct Dyn 36:1935–1952

    Article  Google Scholar 

  • Federal Emergency Management Agency (2022) Hazus Earthquake Model-Technical manual. Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington, D.C.

    Google Scholar 

  • Grunthal G (1998) European macroseismic scale. Chaiers du Centre Européen de Géodynamique et de Séismologie, vol 15. Luxembourg

  • Haselton CB, Liel AB, Taylor-Lange S, Deierlein GG (2008) Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. In: PEER report no. 2007/03. Pacific earthquake engineering research center, University of California, Berkeley, CA, USA

  • Haselton CB, Whittaker AS, Hortacsu A, Baker JW, Bray J, Grant DN (2012) Selecting and scaling earthquake ground motions for performing response-history analyses. In: Proceeding of the 15th WCEE, Lisboa 2012

  • Ibarra LF, Krawinkler H (2005) Global collapse of frame structures under seismic excitations. Report no. 152, August 2005, The John A. Blume Earthquake Engineering Center

  • Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511

    Article  Google Scholar 

  • Italian Civil Protection Department (2018) National Risk Assessment 2018. Overview of the potential major disasters in Italy. Updated December 2018

  • Iervolino I, Baraschino R, Spillatura A (2022) Evolution of seismic reliability of code-conforming Italian buildings. J Earthq Eng. https://doi.org/10.1080/13632469.2022.2087801

    Article  Google Scholar 

  • Italian National Institute of Statistics, ISTAT (2011) Website and data warehouse, available at: https://www.istat.it/ (in Italian)

  • Jalayer F, Cornell CA (2009) Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq Eng Struct Dyn 38(8):951–972

    Article  Google Scholar 

  • Jalayer F, Ebrahimian H, Miano A, Manfredi G, Sezen H (2017) Analytical fragility assessment using unscaled ground motion records. Earthq Eng Struct Dyn 46(15):2639–2663

    Article  Google Scholar 

  • Jeon JS, Park JH, DesRoches R (2015a) Seismic fragility of lightly reinforced concrete frames with masonry infills. Earthq Eng Struct Dynam 44(11):1783–1803

    Article  Google Scholar 

  • Jeon J-S, Lowes LN, DesRoches R, Brilakis I (2015b) Fragility curves for non-ductile reinforced concrete frames that exhibit different component response mechanisms. Eng Struct 85:127–143

    Article  Google Scholar 

  • Kazantzi AK, Vamvatsikos D (2015) Intensity measure selection for vulnerability studies of building classes. Earthq Eng Struct Dyn 44:2677–2694. https://doi.org/10.1002/eqe.2603

    Article  Google Scholar 

  • Kappos AJ (2016) An overview of the development of the hybrid method for seismic vulnerability assessment of buildings. Struct Infrastruct Eng 12(12):1573–1584. https://doi.org/10.1080/15732479.2016.1151448

    Article  Google Scholar 

  • Kappos AJ, Panagopoulos G (2010) Fragility curves for R/C buildings in Greece. Struct Infrastruct Eng 6:39–53

    Article  Google Scholar 

  • Krawinkler H, Lignos DG (2009) How to predict the probability of collapse of non-ductile building structures. In: Ilki A, Karadogan F, Pala S, Yuksel E (eds) Seismic risk assessment and retrofitting. Geotechnical, geological and earthquake engineering, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2681-1_17

    Chapter  Google Scholar 

  • Lagomarsino S, Cattari S, Ottonelli D (2021) The heuristic vulnerability model: fragility curves for masonry buildings. Bull Earthq Eng 19:3129–3163. https://doi.org/10.1007/s10518-021-01063-7

    Article  Google Scholar 

  • Law n. 1684 25 November 1962. Provvedimenti per l'edilizia, con particolari prescrizioni per le zone sismiche. Official Journal n. 326 25 November 1962 (in Italian)

  • Law n. 1086, 5 November 1971. Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica. Official Journal n. 321, 21-12-1971 (in Italian)

  • Law n. 10, 9 January 1991. Norme per l’attuazione del Piano energetico nazionale in materia di uso razionale dell’energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia. Official Journal n. 13, 16-1-1991 (in Italian)

  • Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23(2):357–392

    Article  Google Scholar 

  • Maio R, Tsionis G (2016) Seismic fragility curves for the European building stock: review and evaluation of analytical fragility curves. EUR 27635 EN. https://doi.org/10.2788/586263

  • Manfredi V, Masi A (2018) Seismic strengthening and energy efficiency: towards an integrated approach for the rehabilitation of existing RC buildings. Buildings 8:36. https://doi.org/10.3390/buildings8030036

    Article  Google Scholar 

  • Manfredi V, Masi A, Özcebe AG, Paolucci R, Smerzini C (2022) Selection and spectral matching of recorded ground motions for seismic fragility analyses. Bull Earthq Eng. https://doi.org/10.1007/s10518-022-01393-0

    Article  Google Scholar 

  • Masi A (2003) Seismic vulnerability assessment of gravity load designed R/C frames. Bull Earthq Eng 1(3):371–395

    Article  Google Scholar 

  • Masi A, Digrisolo A (2013) Analisi delle caratteristiche meccaniche di acciai estratti da edifici esistenti in cemento armato. Atti del XV Covegno Anidis, Padova, 30 giugno 2013–4 luglio 2013

  • Masi A, Digrisolo A, Manfredi V (2015) Fragility curves of gravity-load designed RC buildings with regularity in plan. Earthq Struct 9(1):1–27. https://doi.org/10.12989/eas.2015.9.1.001

    Article  Google Scholar 

  • Masi A, Manfredi V, Cetraro G (2016) In-plane performance of RC infilled frames under seismic actions: experimental versus code provision values. In: Modena C, da Porto F, Valluzzi MR (eds) Brick and block masonry—trends, innovations and challenges. Taylor & Francis Group, London, pp 1245–1252. https://doi.org/10.1201/b21889-168 (ISBN 978-1-138-02999-6)

    Chapter  Google Scholar 

  • Masi A, Chiauzzi L, Santarsiero G et al (2019a) Seismic response of RC buildings during the Mw 6.0 August 24, 2016 Central Italy earthquake: the Amatrice case study. Bull Earthq Eng 17:5631–5654

    Article  Google Scholar 

  • Masi A, Digrisolo A, Santarsiero G (2019b) Analysis of a large database of concrete core tests with emphasis on within-structure variability. Materials 12(12):1985

    Article  Google Scholar 

  • Masi A, Chiauzzi L, Nicodemo G, Manfredi V (2020) Correlations between macroseismic intensity estimations and ground motion measures of seismic events. Bull Earthq Eng 18:1899–1932. https://doi.org/10.1007/s10518-019-00782-2

    Article  Google Scholar 

  • Masi A, Lagomarsino S, Dolce M, Manfredi V, Ottonelli D (2021a) Towards the updated Italian seismic risk assessment: exposure and vulnerability modelling. Bull Earthq Eng 19:3253–3286. https://doi.org/10.1007/s10518-021-01065-5

    Article  Google Scholar 

  • Masi A, Manfredi V, Nicodemo G (2021b) Seismic rehabilitation of residential buildings: an action plan for the urban centers in Val d’Agri, Italy. Bull Geophys Oceanogr (int J Earth Sci) 62(2):243–268. https://doi.org/10.4430/bgta0333

    Article  Google Scholar 

  • McKenna F (2011) OpenSees: a framework for earthquake engineering simulation. Comput Sci Eng 13(4):58–66

    Article  Google Scholar 

  • Ministerial Decree 30 May 1972. Norme tecniche alle quali devono uniformarsi le costruzioni in conglomerato cementizio, normale e precompresso ed a struttura metallica. Official Journal n. 190 22 July 1972 (in Italian)

  • Ministerial Decree 1 April 1983. Norme per la disciplina delle opere in c.a., normale e precompresso ed a struttura metallica. Official Journal n. 224 17 August 1983 (in Italian)

  • Ministerial Decree 24 January 1986. Norme tecniche relative alle costruzioni sismiche. Official Journal n. 108 12 May 1986 (in Italian)

  • Ministrial Decree 17 January 2018, NTC 2018. Aggiornamento delle “Norme Tecniche per le Costruzioni”. Official Journal n. 42, 20 February 2018(in Italian)

  • Mori F, Mendicelli A, Moscatelli M, Romagnoli G, Peronace E, Naso G (2020) A new Vs30 map for Italy based on the seismic microzonation dataset. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105745

    Article  Google Scholar 

  • Mouroux P, Le Brun B (2006) Presentation of RISK-UE project. Bull Earthq Eng 4:323–339

    Article  Google Scholar 

  • Nicodemo N, Pittore M, Masi A, Manfredi V (2020) Modelling exposure and vulnerability from post-earthquake survey data with risk-oriented taxonomies: AeDES form, GEM taxonomy and EMS-98 typologies. Int J Disaster Risk Reduct 50:101894. https://doi.org/10.1016/j.ijdrr.2020.101894,2020

    Article  Google Scholar 

  • O’Reilly GJ (2021) Limitations of Sa (T1) as an intensity measure when assessing non-ductile infilled RC frame structures. Bull Earthq Eng 19:2389–2417. https://doi.org/10.1007/s10518-021-01071-7

    Article  Google Scholar 

  • O’Reilly GJ, Sullivan TJ (2017) Modeling techniques for the seismic assessment of the existing Italian RC frame structures. J Earthq Eng 2017:1–35. https://doi.org/10.1080/13632469.2017.1360224

    Article  Google Scholar 

  • O’Reilly GJ, Sullivan TJ (2018) Quantification of modelling uncertainty in existing Italian RC frames. Earthq Eng Struct Dyn 47(4):1054–1074. https://doi.org/10.1002/eqe.3005

    Article  Google Scholar 

  • Ordinance of the President of the Council of Ministers (OPCM) 20 March 2003, n.3274 Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Official Journal 08 May 2003 n. 72 (in Italian)

  • Park YJ, Ang AH-S (1985) Mechanistic seismic damage model for reinforced concrete. J Struct Eng (ASCE) 111(4):722–739

    Article  Google Scholar 

  • Pitilakis K, Crowley H, Kaynia AM (2014) Introduction in: SYNER-G: typology definition and fragility functions for physical elements at seismic risk. In: Pitilakis K, Crowley H, Kaynia AM (eds) Buildings, lifelines, transportation networks and critical facilities. Springer Science+Business Media, Dordrecht

    Google Scholar 

  • Porter K, Kennedy R, Bachman R (2007) Creating fragility functions for performance-based earthquake engineering. Earthq Spectra 23(2):471–489

    Article  Google Scholar 

  • Repapis C, Zeris C, Vintzileou E (2006) Evaluation of the seismic performance of existing RC buildings: II. A case study for regular and irregular buildings. J Earthq Eng 10(3):429–452

    Article  Google Scholar 

  • Ricci P, De Risi MT, Verderame GM, Manfredi G (2013) Influence of infill dis-tribution and design typology on seismic performance of low-and mid-rise RC buildings. Bull Earthq Eng 11(5):1585–1616

    Article  Google Scholar 

  • Ricci P, Manfredi V, Noto F, Terrenzi M, Petrone C, Celano F, De Risi MT, Camata G, Franchin P, Magliulo G, Masi A, Mollaioli F, Spacone E, Verderame GM (2018) Modeling and seismic response analysis of Italian code-conforming rein-forced concrete buildings. J Earthq Eng 22(S2):105–139. https://doi.org/10.1080/13632469.2018.1527733

    Article  Google Scholar 

  • Rossetto T, Elnashai A (2003) Derivation of vulnerability functions for European-type RC structures based on observational data. Eng Struct 25(10):1241–1263

    Article  Google Scholar 

  • Rossetto T, D’Ayala D, Ioannou I, Meslem A (2014) Evaluation of existing fragility curves in: SYNER-G: typology definition and fragility functions for physical elements at seismic risk. In: Pitilakis K, Crowley H, Kaynia AM (eds) Buildings, lifelines, transportation networks and critical facilities. Springer Science+Business Media, Dordrecht

    Google Scholar 

  • Rosti A, Del Gaudio C, Rota M, Ricci P, Di Ludovico M, Penna A, Verderame GM (2020) Empirical fragility curves for Italian residential RC buildings. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00971-4

    Article  Google Scholar 

  • Rota M, Penna A, Strobbia C (2008) Processing Italian damage data to derive typological fragility curves. Soil Dyn Earthq Eng 28(10–11):933–947

    Article  Google Scholar 

  • Royal Decree n. 2229, 16 November 1939. Norme per l'accettazione dei leganti idraulici. Official Journal n.92 18 April 1940 (in Italian)

  • Royal Law Decree n. 640, 25 March 1935. Nuovo testo delle norme tecniche di edilizia con speciali prescrizioni per le località colpite dai terremoti. Official Journal n. 120 22 May 1935 (in italian)

  • Sezen H, Moehle JP (2004) Shear strength model for lightly reinforced concrete columns. J Struct Eng 130(11):1692–1703

    Article  Google Scholar 

  • Smerzini C, Galasso C, Iervolino I, Paolucci R (2014) Ground motion record selection based on broadband spectral compatibility. Earthq Spectra 30(4):1427–1448. https://doi.org/10.1193/052312EQS197M

    Article  Google Scholar 

  • Spence R, Martínez-Cuevas S, Baker H (2021) Fragility estimation for global building classes using analysis of the Cambridge earthquake damage database (CEQID). Bull Earthquake Eng 19:5897–5916. https://doi.org/10.1007/s10518-021-01178-x

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514

    Article  Google Scholar 

  • Verderame GM, Ricci P (2018) An empirical approach for nonlinear modelling and de-formation capacity assessment of RC columns with plain bars. Eng Struct 176:539–554

    Article  Google Scholar 

  • Verderame GM, Ricci P, Esposito M, Manfredi G (2012) STIL v1.0—Software per la ca-ratterizzazione delle proprietà meccaniche degli acciai da c.a. tra il 1950 e il 2000. ReLUIS, Naples, Italy. Available at http://www.reluis.it/

  • Yepes C, Silva V, D’Ayala D, Rossetto T, Ioannou I, Meslen A, Crowley H (2016) The global earthquake model physical vulnerability database. Earthq Spectra 32(4):2567–2585

    Article  Google Scholar 

  • Zacharenaki A, Fragiadakis M, Assimaki D, Papadrakakis M (2014) Bias assessment in incremental dynamic analysis due to record scaling. Soil Dyn Earthq Eng 67:158–168

    Article  Google Scholar 

  • Zuccaro G, Dolce M, De Gregorio D, Speranza E, Moroni C (2015) La scheda CARTIS per la Caratterizzazione Tipologico-Strutturale dei Comparti Urbani costituiti da edifice ordinary: valutazione dell’esposizione in analisi di rischio sismico. In: Proceedings of the 34th GNGTS, Trieste, 2015, available at http://www3.ogs.trieste.it/gngts/files/2015/S23/Riassunti/Zuccaro.pdf (in Italian)

Download references

Acknowledgements

This work has been carried out in the context of the 2019–2021 DPC-ReLUIS Project WP4 “MARS – Seismic Risk Maps” funded by the Italian Civil Protection Department.

Funding

This article has been developed under the financial support of the Italian Department of Civil Protection, within the ReLUIS-DPC 2019–21 Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Manfredi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 

Fig. 13
figure 13

Fragility curves for BF GLD types. Note: the number of storeys increases from left (Low-rise, LR) to right (High-rise, HR); the period of construction increases from top (‘50 s) to bottom (‘90 s)

13,

Fig. 14
figure 14

Fragility curves for BF ERD types. Note: the number of storeys increases from left (Low-rise, LR) to right (High-rise, HR); the period of construction increases from top (‘50 s) to bottom (‘90 s)

14,

Fig. 15
figure 15

Fragility curves for PF GLD types. Note: the number of storeys increases from left (Low-rise, LR) to right (High-rise, HR); the period of construction increases from top (‘50 s) to bottom (‘90 s)

15 and

Fig. 16
figure 16

Fragility curves for PF ERD types. Note: the number of storeys increases from left (Low-rise, LR) to right (High-rise, HR); the period of construction increases from top (‘50 s) to bottom (‘90 s)

16. See Table

Table 6 List of signals

6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manfredi, V., Masi, A., Nicodemo, G. et al. Seismic fragility curves for the Italian RC residential buildings based on non-linear dynamic analyses. Bull Earthquake Eng 21, 2173–2214 (2023). https://doi.org/10.1007/s10518-022-01605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-022-01605-7

Keywords

Navigation