Log in

The main developments of Seismology and Earthquake Engineering since the early 1700s and the new challenges for a sustainable society

  • Review Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

A look at the evolution of Seismology and Engineering Construction from the mid-1700s until the mid-1900s is presented to understand the main accomplishments achieved. Then, we perspective the new advancements toward future mitigation of earthquake impacts with a clear proposal for sustainability and ecological challenge. We will concentrate on analysing the phase 1755–1950 because not enough attention has been paid recently to this exciting period. Next, we jump to our days to look into a few significant problems that require the involvement of the scientific, technical and political communities. In particular: (i) We will look into the developments Intensity Scales should pursue to reduce uncertainties since more than 20 years have passed since the last upgrade. Today, the information from new events is much more extensive and reliable than in the past. Several examples will be presented to illustrate how the frequency of motion should be included in the main characteristics/categories (Building typologies and Vulnerabilities; Damage Grade; Quantity definition) and how it could be beneficial to add a few more descriptors to the Scale, namely shaking of objects and sloshing of water in recipients. (ii) We will analyse the lines of development to mitigate earthquake impacts, and respond to present and future needs, concentrating on the new scientific results that are changing seismology from a “back-analyst” science (indirect contribution to earthquake engineering) into a more pro-active one, with direct impact to reduce risks, such as the EEWS, and low-cost instrumentation. And adding to earthquake engineering the revolutionising health monitoring, as a precautious indicator of malfunction of structures, and a rapid system for evaluation of post-earthquakes, complemented with the citizen science. Finally, all these ingredients need to be merged into simple recommendations for which only data mining will be able to extract new reliable information.

Five Highlights’s for the future:

  • MEMS

  • EEWS

  • Performance-based design

  • Field trips

  • Citizen Science

All these new developments under the umbrella of Machine Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

taken from Branco et al. 2017)

Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87

Similar content being viewed by others

Notes

  1. GNP (Gross Nacional Product) is slightly larger than GDP (Gross Domestic Product).

  2. Bn or B = 10.9.

Abbreviations

3-DEC:

Three-Dimensional Distinct Element Code

AD:

After Christ’ Death

ADRS:

Acceleration-Displacement Response Spectrum

AE:

Acoustic Emission

AFPS:

Association Française du Génie ParaSismique

AGU:

American Geophysical Union

AI:

Artificial Intelligence

ALARP:

As low as reasonably practicable

ATC:

American Technology Council

BC:

Before Christ

CATDAT:

Earthquake damaging database

CEA:

Commissariat à l'Énergie Atomique (France)

CLT:

Cross-Laminated Timber

CRED:

Centre for Research on the Epidemiology of Disasters

D1-D5:

Damage grades

DAS:

Distributed Acoustic sensing

dB:

Decibel

DM:

Damage Matrix

DOF:

Degree of Freedom

DRM:

Disaster Risk Management

DRMKC:

Disaster Risk Management Knowledge Centre

DSS:

Decision Support Systems

DV:

Decision variables

DYFI:

Did you feel it

EAEE:

European Association for Earthquake Engineering

EC Codes:

European Codes

EC-8 Code:

Part dedicated to the Earthquake Problems

ECEE:

European Conference on Earthquake Engineering

EDP:

Earthquake Demanding Parameters

EEFIT:

Earthquake Engineering Field Investigation Team

EERC:

Earthquake Engineering Research Center

EERI:

Earthquake Engineering Research Institute

EEWS:

Earthquake Early Warning Systems

EGU:

European Geosciences Union

EIS:

Environmental Intensity Scale

EM-DAT:

Emergency Events Database

EMEC:

Euro-Mediterranean Earthquake Catalogue

EMS-98:

European Macroseismic Scale

EMSC-CSEM:

Euro-Mediterranean Seismological Centre, Centre Sismologique Euro-Méditerranéen

ERCC:

Emergency Response Coordination Centre (DG ECHO)

ESC:

European Seismological Commission

EU:

European Union

FEM:

Finite Element Method

FEMA:

Federal Emergency Management Agency

FFF:

Fused filament fabrication

FRP:

Fiber Reinforced Materials

GDP:

Gross Domestic Product

GEM:

Global Earthquake Model

GM:

Ground Motion

GMPE:

Ground Motion Prediction Equations

GNP:

Gross National Product

GNSS:

Global Navigational Satellite System

GPS:

Global Positioning System

HDI:

Human Development Index

IAEE:

International Association on Earthquake Engineering

IASPEI:

International Association of Seismology and Physics of the Earth’s Interior

IBC:

International Building Code

IDNDR:

International Decade for Natural Risk Reduction

IM:

Intensity measures

IMS:

International Macroseismic Scale

InSAR:

Interferometric Synthetic Aperture Radar

ISC:

International Seismological Centre

IT:

Information Technology

IUSS:

Istituto Universitario di Studi Superiori di Pavia

JMA:

Japan Meteorological Agency for Intensity

JRC:

Joint Research Centre, EU

LI:

Laser Interferometry

LSB:

Least Significant Bit

MEMS:

Micro-ElectroMechanical System

MIP:

Macroseismic Intensity Points

ML:

Machine Learning

MMI:

Mercalli Modified Intensity

MPM:

Material Point Method

MSK:

Medvedev, Sponheuer and Karnik Scale

NRT:

Near-real-time

NGDC:

National Geophysical Data Center

OBS:

Ocean Bottom Seismometer

OEF:

Operational Earthquake Forecasting

OR:

Operational Research

PBD:

Performance-based design

PEER:

Pacific Earthquake Engineering Research Center

PEM:

Photonics for Earthquake Monitoring

PGA:

Peak Ground Acceleration

PGD:

Peak Ground Displacement

PGV:

Peak Ground Velocity

PSHA:

Probability Seismic Hazard Analysis

RC:

Reinforced Concrete

RP:

Return Period

RRE:

Rapid Response to Earthquakes

RS:

Response spectrum

SAR:

Synthetic Aperture Radar

SEAOC:

Structural Engineers Association of California

SEE:

Seismology and Earthquake Engineering

SGM:

Strong Ground Motion

SHM:

Structural Health Monitoring

SMART:

Cables: Seismic Monitoring & Reliable Telecommunications

SMART Array:

Strong Motion Array Taiwan

SIRIUS:

Seismic Risk Indicator in Urban Space

SM:

Strong Motion

SMA:

Strong Motion Accelerometer

SMART:

Strong Motion Array in Taiwan

TEWS:

Tsunami Early Warning Systems

THM:

Carbon Fiber Material

UBC:

Uniform Building Code

UNDRR:

UN Disaster Risk Reduction

USGS:

US Geological Survey

WCEE:

World Conference on Earthquake Engineering

WW:

World War

WWSSN:

World Wide Seismograph Standard Network

-:

AGEO

-:

LESS-LOSS

-:

NERA

-:

NERIES

-:

REAKT

-:

SERA

-:

SERIES

-:

SHEEC

-:

TURNkey

-:

UPSTrat-MAFA

G–R:

Gutenberg–Richter law of occurrences

M:

Richter Magnitude

MW :

Moment Magnitude

P-δ effect:

Increases buckling probability

T, τ:

Period of vibration (sec)

T:

Period of time (centuries, years, days)

V:

Velocity (m/s)

λ:

Rate of occurrence

λ:

Wave length (m)

ω:

Frequency of vibration (Hz)

References

  • 3ECEES (2022) 3rd European Conference on Earthquake Engineering. Home (https://3ecees.ro/)

  • Agnew DC (2002) History of seismology. Chapter 1. In: International Handbook of Earthquake and Engineering Seismology, 81 A. International Association of Seismology and Physics Earth’s Interior Committee on Education. ISBN: 0-12-440652-1

  • Ahmadzadeh S, Doloei GJ, Zafarani H (2020) Ground motion to intensity conversion equations for Iran. Pure Appl Geophys 177(11):5435–5449

    Article  Google Scholar 

  • Alcik H, Ozel O, Apaydin N, Erdik M (2009) A study on warning algorithms for Istanbul earthquake early warning system. Geophys Res Lett 36(5)

  • Allen RM, Melgar D (2019) earthquake early warning: advances, scientific challenges, and societal needs. Annu Rev Earth Planet Sci 47:361–388. https://doi.org/10.1146/annurev-earth-053018-060457

    Article  Google Scholar 

  • Ambraseys NN (1985) A damaging seaquake. Earthq Eng Struct Dynam 13:421–424

    Article  Google Scholar 

  • Ambraseys NN (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press

    Book  Google Scholar 

  • Ambraseys NN, Douglas J, Margaris B, Sigbjörnsson R, Smit P, Suhadolc P (2002) Internet Site for European Strong-motion Data. In: Proceedings of the 12th European Conference on Earthquake Engineering

  • Ansari F (2009) Structural health monitoring with fiber optic sensors. Front Mech Eng China 4:103–110. https://doi.org/10.1007/s11465-009-0032-y

    Article  Google Scholar 

  • AON (2020) Report (TV Jayan New Delhi | Updated on February 04, 2020). (2020). Natural disasters cost world $232 billion in 2019: Report (TV Jayan New Delhi)

  • Atkinson GM, Wald DJ (2007) Did You Feel It?” Intensity data: a surprisingly good measure of earthquake ground motion. Seismol Lett 78:362–368

    Article  Google Scholar 

  • Audemard F (2015) Earthquake environmental effect for seismic hazard assessment: the ESI intensity scale and the EEE catalogue (Luca Guerrieri Editor). Memorie Descrittive della Carta Geologica D'Italia

  • Aven T, Cox LA (2017) Introduction to special virtual issue: simple characterizations and communication of risks. Risk Anal. https://www.onlinelibrary.wiley.com/page/journal/15396924/homepage/simple_characterisations_and_communication_of_risks.htm

  • Azevedo Fortes M (1722) World Catalogue ”Repositório Universidade de Coimbra” (in portuguese)

  • Bao C, Wu D, Wan J, Li J, Chen J (2017) Comparison of different methods to design risk matrices from the perspective of applicability. Procedia Comput Sci 122:455–462

    Article  Google Scholar 

  • Baptista MA (2020) Tsunamis along the Azores Gibraltar plate boundary. Pure Appl Geophys 177(4):1713–1724. https://doi.org/10.1007/s00024-019-02344-8

    Article  Google Scholar 

  • Baptista MA, Miranda JM (2009) Revision of the Portuguese catalog of tsunamis. Nat Hazard 9(1):25–42

    Article  Google Scholar 

  • Basabe P (2013). Hyogo framework for action 2005–2015. In: Encyclopedia of natural hazards. Springer, Dordechut, pp 508–516

  • Beaufort Wind Scale (1805) https://www.weather.gov/mfl/beaufort

  • Berkeley Engineer (2021) Fall issue, vol 20: 3. University of California, Berkeley

  • Biggs JM (1964) Introduction to structural dynamics. McGraw-Hill

    Google Scholar 

  • Bilham R (1995) Global fatalities from earthquakes in the past 2000 years: prognosis for the next 30. In: Rundle J, Klein F, Turcotte D (eds) Reduction and predictability of natural disasters. Santa Fe institute studies in the sciences of complexity, vol XXV. Addison Wesley, Reading, pp 19–31

  • Bilham R (2004) Global urban earthquakes: a safer world or worse to come? Seismol Res Lett 75(6):706–712

    Article  Google Scholar 

  • Bilham R (2009) The seismic future of cities. Bull Earthq Eng 7(4):839–887. https://doi.org/10.1007/s10518-009-9147-0

    Article  Google Scholar 

  • Bodda SS, Keller M, Gupta A, Senfaute G (2022) A Bayesian approach to estimate weights for GMPE models in a logic tree (under review https://doi.org/10.21203/rs.3.rs-378051/v1)

  • Bolt B (1999) Earthquakes, 4th edn. W. H. Freeman & Co., New York

    Google Scholar 

  • Bonacho J, Oliveira CS (2018) Multi-hazard analysis of earthquake shaking and tsunami impact. Int J Disaster Risk Reduct 31:275–280. https://doi.org/10.1016/j.ijdrr.2018.05.023

    Article  Google Scholar 

  • Bonilla MG, Mark RK, Lienkaemper JJ (1984) Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bull Seismol Soc Am 74(6):2379–2411

    Google Scholar 

  • Boschetti L, Ioualalen M (2021) Integrated tsunami intensity scale based on maxima of tsunami amplitude and induced current. Natural Hazards (dordrecht, Netherlands) 105(1):815–839. https://doi.org/10.1007/s11069-020-04338-5

    Article  Google Scholar 

  • Branco F, Ferreira J, Correia JR (2017) Evolução das Construções, Part 1. Class Notes. IST, Lisbon (in portuguese)

  • Buckle IG (1986) Development and application of base isolation and passive energy dissipation: a world overview. InL Proceedings of of ATC-17 Seminar on Base Isolation and Passive Energy Dissipation

  • Bychkov S (2020) Earthquake forecast and Niels Bohr postulates. SSRN Electron J. https://doi.org/10.2139/ssrn.3535714

    Article  Google Scholar 

  • Calvi M (2022) IAEE Brainstorming Sessions for Future Directions of Earthquake Engineering. IAEE.or.JP. Retrieved January 11, 2022, from https://www.iaee.or.jp/pdf/Brainstorming_Sessions%20Report_for_IAEE_Webpage_20211223.pdf

  • Campisi T, Scibilia F (2016) The use of wood with an anti-seismic function in the architecture of Palermo during the 18th century. In: Lecture Notes in Civil Engineering. Springer International Publishing, pp 113–124

  • Candeias P, Vicente M, Rupakhety R, Lopes M, Ferreira MA, Oliveira CS (2019) Seismic performance of non-structural elements assessed through shake table tests: the KnowRISK room set-up. In: Rupakhety R (ed) Geotechnical, geological and earthquake engineering. Springer, vol 47, pp 293–307

  • Cantelmi F (2017) Un Sistema Construttivo Antisismico: La Casa Baraccata. Argomenti GEOPunto 74:8–12 ((in italian))

    Google Scholar 

  • Carocci CF, Macca V, Tocci C (2021) The roots of the 18th century turning point in earthquake-resistant building. CRC Press, In History of Construction Cultures. J. Mascarenhas-Mateus and A.P. Pires

    Book  Google Scholar 

  • Carpani B (2017) Base isolation from a historical perspective. In: Proceedings 16th World Conference on Earthquake Engineering. Santiago do Chile

  • Carrilho F (2021) Personal Communication

  • Carvajal M, Cisternas M, Gubler A, Catalán PA, Winckler P, Wesson RL (2017) Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: implications for source depth constraints. J Geophys Res Solid Earth 122:4–17. https://doi.org/10.1002/2016JB013269

    Article  Google Scholar 

  • Cerero y Sáenz R (1890) Estudio sobre la Resistencia y Estabilidad de los Edificios sometidos à Huracanes y Terremotos, Edición de la Asociación Española de Ingeniería Sísmica (in spanish)

  • Chang Y-F (2021) Nonlinear whole seismology, topological seismology. Science Publications, Magnitude-Period Formula of Earthquakes and Their Predictions

    Google Scholar 

  • Choisy A (1873) L’Art de bâtir chez les Romains. Ducher.(in French)

  • Cirillo P, Taleb NN (2020) Tail risk of contagious diseases. Nature Phys 16(6):606–613. https://doi.org/10.1038/s41567-020-0921-x

    Article  Google Scholar 

  • Clayton RW, Heaton T, Aivazis M, et al (2011) Community seismic network. Ann Geophys 54:6. https://doi.org/10.4401/ag-5269

  • Clough RW, Penzien J (1975) Dynamics of Structures. McGraw-Hill

    Google Scholar 

  • Çoban B, Scaparra MP, O’Hanley JR (2021) Use of OR in earthquake operations management: A review of the literature and roadmap for future research. Int J Disaster Risk Reduct: IJDRR 65(102539):102539. https://doi.org/10.1016/j.ijdrr.2021.102539

    Article  Google Scholar 

  • Coburn AW, Spence R (2002) Earthquake protection, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Cochran E, Lawrence J, Christensen C, Chung A (2009) A novel strong-motion seismic network for community participation in earthquake monitoring. IEEE Instrument Measure Mag 12(6):8–15. https://doi.org/10.1109/mim.2009.5338255

    Article  Google Scholar 

  • Constantin AP, Moldovan IA, Partheniu R, Grecu B, Ionescu C (2021) Correlations between macroseismic intensity values and ground motion measures of Vrancea (Romania) subcrustal earthquakes. Rom J Phys 66:808

    Google Scholar 

  • Contreras D, Wilkinson S, Aktas YD, Fallou L, Bossu R, Landès M (2022) Intensity-based sentiment and topic analysis.The Case of the 2020 Aegean Earthquake. Front Built Environ. https://doi.org/10.3389/fbuil.2022.839770

  • Cox LA (2008) What's wrong with risk matrices? Risk Anal 28(2):497–512. https://doi.org/10.1111/j.1539-6924-2008.01030.x

    Article  Google Scholar 

  • CRED/UNDRR (2020) Human cost of disasters: an overview of the last 20 years 2000–2019. Report- UN Office for Disaster Risk Reduction. CRED, UNDRR, ULovain

  • Cremen G, Galasso C (2020) Earthquake early warning: Recent advances and perspectives. Earth-Sci Rev 205:103184. https://doi.org/10.1016/j.earscirev.2020.103184

    Article  Google Scholar 

  • D’Alessandro A, Vitale G, Scudero S, D’Anna R, Costanza A, Fagiolini A, Greco L (2017) Characterization of MEMS accelerometer self-noise by means of PSD and Allan Variance analysis. In: 7th IEEE international workshop on advances in sensors and interfaces (IWASI)

  • Daniell JE, Khazai B, Wenzel F, Vervaeck A (2011) The CATDAT damaging earthquakes database. Natural Hazards Earth Syst Sci 11(8):2235–2251. https://doi.org/10.5194/nhess-11-2235-2011

    Article  Google Scholar 

  • Daniell JE, Khazai B, Wenzel F, Vervaeck A (2012) The Worldwide economic impact of earthquakes. In: Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), pp 1252–1261. Paper #2038. Lisbon

  • Davidovici V (2016) Conception-construction parasismique: Traité d’application de l’Eurocode 8 (Ed. 1). Eyrolles (in French)

  • Dewey J, Byerly P (1969) The early history of seismometry (to 1900). Bull Seismol Soc Am 59(1):183–227

    Google Scholar 

  • Di Giulio G, Cultrera G, Cornou C, Bard P-Y, Al Tfaily B (2021) Quality assessment for site characterization at seismic stations. Bull Earthq Eng 19(12):4643–4691. https://doi.org/10.1007/s10518-021-01137-6

    Article  Google Scholar 

  • Dolce M, Di Bucci D (2017) Comparing recent Italian earthquakes. Bull Earthq Eng 15(2):497–533. https://doi.org/10.1007/s10518-015-9773-7

    Article  Google Scholar 

  • Dolce M, Prota A, Borzi B et al (2021) Seismic risk assessment of residential buildings in Italy. Bull Earthq Eng 19:2999–3032. https://doi.org/10.1007/s10518-020-01009-5

    Article  Google Scholar 

  • Dollet C, Guéguen P (2021) Global occurrence models for human and economic losses due to earthquakes (1967–2018) considering exposed GDP and population. Natural Hazards (Dordrecht, Netherlands). https://doi.org/10.1007/s11069-021-04950-z

  • Dolomieu D (1884) Mémoire Sur Les Tremblemens de Terre de la Calabre Pendant l’Anné 1783. Hachette Livre - BNF

  • Donovan NC (1972) A statistical evaluation of strong motion data including the February 9, 1971 San Fernando earthquake. In: Proceedings of the 5th World Conference on Earthquake Engineering (5WCEE), pp 1252–1261

  • Douglas J (2021) Ground motion prediction equations 1964–2021. https://www.strath.a.uk/staff/douglasjohndr/

  • Douglas J, Ansal A (2014) Special issue in memory of Nicholas Ambraseys. Bull Earthq Eng 12(1):1–3. https://doi.org/10.1007/s10518-013-9582-9

    Article  Google Scholar 

  • Dunbar PK, Lockridge PA, Whiteside LS, World Data Center for Solid Earth Geophysics (1992) Catalog of significant earthquakes, 2150 B.C.-1991 A.D. including quantitative casualties and damage. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Data and Information Service, National Geophysical Data Center

  • Dusenberry DO (2019) Performance-based design is the future. Insights. Structure Magazine, 50

  • Dusi A (2019) Power point presentation. LNEC, Lisbon

    Google Scholar 

  • EC-8 (2004). EN 1998-1 (2004) Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings [Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]

  • Egen PNC (1828) Ueber das Erdbeben in den Rhein- und Niederlanden vom 23. Februar 1828. Annalen der Physik 89(5):153–163. https://doi.org/10.1002/andp.18280890514 (in German)

  • Elnashai AS (2002) Fundamentals of earthquake engineering: from source to fragility. Wiley, New York

    Google Scholar 

  • EMDAT (2020) OFDA/CRED International Disaster Database, Université catholique de Louvain, Brussels (OurWorldData.org/natural-disasters)

  • EMSC – CSEM, Euro-Mediterranean Seismological Center. Retrieved 4 January 2021, from https://www.emsc-csem.org/#2

  • Erdik MÖ, Toksöz MN (eds) (1987) Strong ground motion seismology. Springer, Netherlands

    Google Scholar 

  • Espinosa-Aranda JM, Cuellar A, Garcia A, Ibarrola G, Islas R, Maldonado S, Rodriguez FH (2009) Evolution of the Mexican Seismic Alert System (SASMEX). Seismol Res Lett 80(5):694–706. https://doi.org/10.1785/gssrl.80.5.694

    Article  Google Scholar 

  • Esteva L (1968) Bases para la formulacion de decisiones de diseno sismico. Ph.D. Thesis and Report 182, Universidad Autonoma Nacional de Mexico

  • Estêvão J (2005) Personal communication

  • Estêvão J, Oliveira CS, Ferreira R (2021) Impacto do Sismo de 28 de Fevereiro de 1969: Comportamento do Posto de Polícia de Viação e Trânsito em Lagos. Congress REHAB2021, LNEC, Lisbon (in Portuguese)

  • Fajfar P (2018) Analysis in seismic provisions for buildings: past, present and future: the fifth Prof. Nicholas Ambraseys lecture. Bull Earthq Eng 16(7):2567–2608. https://doi.org/10.1007/s10518-017-0290-8

    Article  Google Scholar 

  • Falcone R, Lima C, Martinelli E (2020) Soft computing techniques in structural and earthquake engineering: a literature review. Eng Struct 207:110269. https://doi.org/10.1016/j.engstruct.2020.110269

    Article  Google Scholar 

  • Fernandes AMP (2021) Edifício Pombalino 3D. Modelos Didáticos. MSc Thesis, Instituto Superior Tecnico, Lisbon (in Portuguese)

  • Ferrari G, Mcconnell A (2005) Robert Mallet and the ‘Great Neapolitan earthquake’ of 1857. Notes Records R Soc Lond 59(1):45–64. https://doi.org/10.1098/rsnr.2004.0076

    Article  Google Scholar 

  • Ferry Borges (LNEC, 1955) Simposio sobre a Acção dos Sismos, Ordem dos Engenheiros (in Portuguese)

  • Freddi F, Galasso C, Cremen G, DallAsta A, Di Sarno L, Giaralis A, Gutiérrez-Urzúa F, Málaga-Chuquitaype C, Mitoulis SA, Petrone C, Sextos A, Sousa L, Tarbali K, Tubaldi E, Wardman J, Woo G (2021) innovations in earthquake risk reduction for resilience: recent advances and challenges. Int J Disaster Risk Reduct: IJDRR 60:102267–102267. https://doi.org/10.1016/j.ijdrr.2021.102267

    Article  Google Scholar 

  • Freeman JR (1932) Earthquake damage and earthquake insurance : studies of a rational basis for earthquake insurance, also studies of engineering data for earthquake-resisting construction. McGraw-Hill Book Co

  • Galasso C, McCloskey J, Pelling M, Hope M, Bean CJ, Cremen G, Guragain R, Hancilar U, Menoscal J, Mwang’a K, Phillips J, Rush D, Sinclair H (2021) Editorial Risk-based, pro-poor urban design and planning for tomorrow’s cities. Int J Disaster Risk Reduct: IJDRR 58:102158–102158. https://doi.org/10.1016/j.ijdrr.2021.102158

    Article  Google Scholar 

  • Gere J (1983). Earthquake tables. The John A. Blume Earthquake Engineering Center. Stanford University, Report MP-7

  • Giardini D, Grünthal G, Shedlock KM, Zhang P (1999) The GSHAP global seismic hazard map. Ann Geophys. https://doi.org/10.4401/ag-3784

    Article  Google Scholar 

  • Gómez-Capera AA, D’Amico M, Lanzano G, Locati M, Santulin M (2020) Relationships between ground motion parameters and macroseismic intensity for Italy. Bull Earthq Eng 18(11):5143–5164. https://doi.org/10.1007/s10518-020-00905-0

    Article  Google Scholar 

  • Gómez-Paccard M, Osete ML, Chauvin A et al (2016) New constraints on the most significant paleo-intensity change in Western Europe over the last two millennia. A non-dipolar origin? Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2016.08.024

    Article  Google Scholar 

  • Grünthal G (1998) European macroseismic scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie. Luxembourg 15:1–99 ((in French))

    Google Scholar 

  • Grünthal G, Musson RMW, Schwarz J, Stucchi M (1998) European Macroseismic Scale 1998 EMS-98 Editor. Gfz-Potsdam.De. Retrieved January 11, 2022, from https://media.gfz-potsdam.de/gfz/sec26/resources/documents/PDF/EMS-98_Original_englisch.pdf

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. https://doi.org/10.1007/s10950-012-9302-y

    Article  Google Scholar 

  • Guerreiro L (2021) Provas de Agregação. Instituto Superior Tecnico (in portuguese)

  • Guidoboni E, Ebel JE (2009) Earthquakes and tsunamis in the past: a guide to techniques in historical seismology. Cambridge University Press, Cambridge

    Google Scholar 

  • Gülkan P, Langenbach R (2004) The earthquake resistance of traditional timber and masonry dwellings in Turkey. In: Proceedings 13 World Conference on Earthquake Engineering (13WCEE)

  • Gülkan P, Reitherman R (2012) The IAEE at Fifty: a brief History of the International Association for Earthquake Engineering. IAEE

  • Gülkan P, Sözen MA (2018) Genealogy of performance-based seismic design: Is the present a re-crafted version of the past? In (R. Rupakhety, S.Ólafson Editors). Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson. Geotechnical, Geological and Earthquake Engineering 44. Ch 1. https://doi.org/10.1007/978-3-319-62099-2_1

  • Gutenberg B, Richter CF (1954) Seismicity of the Earthland Associated Phenomena. Princeton University, Press

    Google Scholar 

  • Gwilt J (1867) The Encyclopedia of Architecture: The Classic 1867 Edition. Crown Publishers, Inc

  • Hayes GP, Smoczyk GM, Villaseñor AH, Furlong KP, Benz HM (2020) Seismicity of the Earth 1900–2018. U.S. Geological Survey Scientific Investigations Map 3446, scale 1:22,500,000, https://doi.org/10.3133/sim3446

  • Heaton TH - home page - California Institute of Technology. (2018). Caltech.Edu. Retrieved January 11, 2022, from http://heaton.caltech.edu/

  • Historical Seismicity (2020). (https://en.wikipedia.org/wiki/List_of_historical_earthquakes)

  • Holland A (2003) Earthquake data recorded by the MEMS accelerometer: field testing in Idaho. Seismol Res Lett 74(1):20–26. https://doi.org/10.1785/gssrl.74.1.20

    Article  Google Scholar 

  • Hommel D, Parry K (2015) Earthquakes and their demonic impacts: when the ground really starts to shake. Lecture Notes GEOG 350 Geography of Natural Hazards

  • Horiuchi S, Horiuchi Y, Yamamoto S, Nakamura H, Wu C, Rydelek PA, Kachi M (2009) Home seismometer for earthquake early warning. Geophys Res Lett. https://doi.org/10.1029/2008gl036572

    Article  Google Scholar 

  • Hough SE (2013) Missing great earthquakes. J Geophys Res: Solid Earth 118:1098–1108. https://doi.org/10.1002/jgrb.50083

    Article  Google Scholar 

  • Hough SE (2020) The Great Quake Debate. University of Washington Press, The Crusador, The Skeptic and the rise of Modern Seismology

    Google Scholar 

  • Hough SE, Martin SS (2021) Which Earthquake Accounts Matter? Seismol Res Lett 92:1069–1084. https://doi.org/10.1785/0220200366

    Article  Google Scholar 

  • Hough, S. E., & Bilham, R. G. (2006). After the earthquakes: Elastic rebound on an urban planet. Oxford University Press

  • Housner GW (1952) Characteristics of Strong Motion Earthquakes”. Bull Seismol Soc Am 37(1):19–31

    Article  Google Scholar 

  • Hsiao N-C, Wu Y-M, Shin T-C, Zhao L, Teng T-L (2009) Development of earthquake early warning system in Taiwan. Geophys Res Lett 36:L00B-02. https://doi.org/10.1029/2008GL036596

    Article  Google Scholar 

  • Hu YX (2006) Earthquake engineering, 2nd edn. Earthquake Press, Bei**g

    Google Scholar 

  • HYOGO (2005–2015). https://www.unisdr.org› city

  • IAEE: World List (2020) IAEE. Retrieved January 12, 2022, from https://www.iaee.or.jp/worldlist.html

  • IAEE (2021) Brainstorming Sessions for Future Directions of Earthquake Engineering. https://www.iaee.or.jp/pdf/Brainstorming_Sessions%20Report_for_IAEE_Webpage_20211223.pdf

  • IBC (2018) International Building Code. https://codes.iccsafe.org/content/IBC2018P5

  • IPMA (2020). DYFI Enquiry on the effects of the M7.8 1969 San Vincent Earthquake, 50 years past the event. Lisbon

  • ISC-GEM catalogue form. (n.d.). ISC.Ac.Uk. Retrieved January 11, 2022, from http://www.isc.ac.uk/iscgem/request_catalogue.php

  • Ishiyama Y (2011) Introduction to Earthquake Engineering and Seismic Codes in the World

  • ISO 3010:1988 (2001) Bases for Design of Structures. Seismic Actions on Structures. https://www.iso.org/standard/8087.html International Organization for Standardization, Geneva

  • ISO 10137:2007. Bases for Design of Structures. Serviceability of buildings and walkways against vibrations. 2007. International Organization for Standardization, Geneva

  • Jacoby GC (1997) Application of tree ring analysis to paleoseismology. Rev Geophys 35(2):109–124

    Article  Google Scholar 

  • Jiao P, Alavi AH (2019) Artificial intelligence in seismology: Advent, performance and future trends. Geosci Front. https://doi.org/10.1016/j.gsf.2019.10.004

    Article  Google Scholar 

  • Jordan TH, Chen Y-T, Gasparini P, Madariaga R, Main I, Marzocchi W, Papadopoulos G, Sobolev G, Yamaoka K, Zschau J (2011) Operational earthquake forecasting: state of knowledge and guidelines for utilization. Report by the International Commission on Earthquake Forecasting for Civil Protection. INGV, Italy

  • Karnik V (1971) Earthquake Catalogue 1801–1900. Springer, In Seismicity of European Area

    Google Scholar 

  • Katayama T (1991) Use of dense array data in the determination of engineering properties of strong motions. Struct Saf 10(1–3):27–51. https://doi.org/10.1016/0167-4730(91)90005-t

    Article  Google Scholar 

  • Kates RW, Pijawka D (1977) From rubble to monument: the pace of reconstruction. Reconst following Disaster 1:1–23

    Google Scholar 

  • Katsushika Hokusai (1830) https://www.metmuseum.org/art/collection/search/45434

  • Kelly JM (1981) Aseismic base isolation: its history and prospects. In: Proceedings of the first world congress on joint sealing & bearing systems for concrete structures

  • Kohler MD, Heaton TH, Cheng M-H (2013) The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants. In: Lynch JP, Yun C-B, Wang K-W (eds) Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013. SPIE

  • Koketsu K (2021) Earthquakes and ground motion. In: Ground motion seismology. Springer, Singapore, pp 1–30

  • Kozák J, Musson RMW (1997) European earthquakes in the 18th century through contemporary pictorial documentation. Pure Appl Geophys 150(2):305–327. https://doi.org/10.1007/s000240050078

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein EC (2014) A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst 15:3849–3889. https://doi.org/10.1002/2014GC005407

    Article  Google Scholar 

  • Krimsky S, Plough A (1988) Environmental hazards: communicating risks as a social process. Dover, Auburn House

    Google Scholar 

  • KTP-N.2–89 (1989) Seismic Code in Albania. (in Performance of RC cast-in-place buildings during the November 26, 2019 Albania earthquake, by Marinkovic et al. 2022 accepted Bulletin of Earthquake Engineering)

  • Lagioia, R., & Panteghini, A. (2016). On the existence of a unique class of yield and failure criteria comprising Tresca, von Mises, Drucker–Prager, Mohr–Coulomb, Galileo–Rankine, Matsuoka–Nakai and Lade–Duncan. Proceedings. Mathematical, Physical, and Engineering Sciences, 472(2185), 20150713. DOI: https://doi.org/10.1098/rspa.2015.0713

  • Langenbach R (1989) Bricks, Mortar, and Earthquakes. APT Bull 31:3–4

    Google Scholar 

  • Lario J, Bardaji T, Silva PG, Zazo C, Goy JL (2016) Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale). Geol Acta 14(2):179–193. https://doi.org/10.1344/GeologicaActa2016.14.2.6

    Article  Google Scholar 

  • Lee WHK, Igel H, Trifunac MD (2009) Recent advances in rotational seismology. Seismol Res Lett 80(3):479–490. https://doi.org/10.1785/gssrl.80.3.479

    Article  Google Scholar 

  • Lemos JV, Oliveira CS, Navarro M (2015) 3-D nonlinear behavior of an obelisk subjected to the Lorca May 11, 2011 strong motion record. Eng Failure Anal 58:212–228. https://doi.org/10.1016/j.engfailanal.2015.09.001

    Article  Google Scholar 

  • Li S, Chen Y, Yu T (2021) Comparison of macroseismic intensity scales by considering empirical observations of structural seismic damage. Earthq Spectra 37(1):449–485. https://doi.org/10.1177/8755293020944174

    Article  Google Scholar 

  • Lopes M (2012) Estrutura Sismo-Resistente da Gaiola Pombalina: Passado e Futuro. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Lisboa, Conferência Internacional sobre Reabilitação de Estruturas Antigas de Alvenaria ((in Portuguese))

    Google Scholar 

  • Maciel J (2015) Vitruvio. Tratado de Arquitectura. Contrafortes e Amparos (6.8.6–7). Translation. Illustration by Thomas Noble Howe. IST Press, University of Lisbon

  • Mallet R (1857) Great Neapolitan Earthquake of 1857: The First Principles of Observational Seismology as Developed in the Report to the Royal Society of London of the Expedition Made by Command of the Society Into the Interior of the Kingdom of Naples. 1

  • Mallet R (1862) Great Neapolitan Earthquake of 1857. Chapman and Hall, The First Principles of Observational Seismology

    Google Scholar 

  • Mallet R, Mallet JW (1858) The earthquake catalogue of the British Association: with the discussion, curves and maps, etc

  • Manic MI, Bulajic B, Trifunac M (2016) A note on peak accelerations computed from sliding of objects during the 1969 Banja Luka earthquakes in former Yugoslavia. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2015.04.021

    Article  Google Scholar 

  • Mariano EB, Ferraz D, de Oliveira Gobbo SC (2021) The Human Development Index with multiple Data Envelopment Analysis approaches: A comparative evaluation using Social Network Analysis. Soc Indicators Res 157(2):443–500. https://doi.org/10.1007/s11205-021-02660-4

    Article  Google Scholar 

  • Marreiros C, Alves PM, Carrilho F, Oliveira CS, Custódio S (2021) Preliminary results of new macroseismic data of the 28th February 1969, a 7.9 Ms earthquake at SW of Cap St. Vicent, Portugal. Abstract no. 391. 37th General Assembly of the European Seismological Commission ESC2021

  • Martín-González F (2021) Review and proposed method to study the damage orientation of earthquake effects in pre-instrumental earthquakes. Phys Solid Earth 57(6):980–993

    Article  Google Scholar 

  • Mascarenhas J (2009) Sistemas de Construção V - O Edifício de Rendimento da Baixa Pombalina de Lisboa. Materiais Básicos (3ª Parte): o vidro. Lisboa: Livros Horizonte. 3ª Edição (in Portuguese)

  • McGuire RK (2008) Probabilistic seismic hazard analysis: early history. A review. Earthq Eng Struct Dynam 37:329–338. https://doi.org/10.1002/eqe.765

    Article  Google Scholar 

  • Medvedev SV, Sponheuer W (1964) Scale of seismic Intensity MSK. In: Proceedings 3rd World Conference Earthquake Engineering (3WCEE), pp 4–5

  • Medvedev SV, Sponheuer W, Karnik V (1965) Seismic intensity scale version MSK 1964. Academy of Sciences of the USSR, Soviet Geophysical Committee

    Google Scholar 

  • Melgar D, Crowell BW, Geng J, Allen RM, Bock Y, Riquelme S, Hill EM, Protti M, Ganas A (2015) Earthquake magnitude calculation without saturation from the scaling of peak ground displacement: GPS PGD SCALING. Geophys Res Lett 42(13):5197–5205. https://doi.org/10.1002/2015gl064278

    Article  Google Scholar 

  • Michell J (1760) Conjectures concerning the Cause & Observations upon the Phaenomena of Earthquakes

  • Michetti AM (2007) Environmental Seismic Intensity scale - ESI 2007 (D. Servizio Geologico d' Italia. M. D. Della Carta Geologica D’italia Volume LXXIV Dipartimento Difesa, Ed.)

  • Milne J (1898) Seismology. 1st Edition, London

  • Milne J (1911a) A catalogue of destructive earthquakes, AD 7 to AD 1899. British Association for Advancement

  • Milne J (1911b) Earthquake and other earth movements. Cambridge University Press

    Google Scholar 

  • Milne WG, Davenport AG (1969) Distribution of earthquake risk in Canada. Bull Seismol Soc Am 59(2):729–754. https://doi.org/10.1785/BSSA0590020729

    Article  Google Scholar 

  • Minson SE, Meier M-A, Baltay AS, Hanks TC, Cochran ES (2018) The limits of earthquake early warning: Timeliness of ground motion estimates. Sci Adv. https://doi.org/10.1126/sciadv.aaq0504

    Article  Google Scholar 

  • Montessus De Ballore F (1911) La Sismologie Moderne. Les Tremblements de Terre. Librairie Armand Colin

  • Moreira de Mendonça JJ (1758) Historia Universal dos Terremotos. https://archive.org/details/historiauniversa00mend

  • Mota de Sá FM, Ferreira MA, Oliveira CS (2012) SIRIUS, seismic risk indicator in urban space: An application to the central group in Azores application to Lisbon. In: Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE). Lisbon

  • Munich RE (2021) Natural disaster risks: Losses are trending upwards. https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards.html

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2007GC001743

    Article  Google Scholar 

  • Muller RS, Howe RT, Senturia SD, Smith RL, White RM (eds) (1991) Microsensors. IEEE Press, New York

    Google Scholar 

  • Multi-Language Glossary on Natural Disasters (1997) Japan National Committee for the International Decade for Natural Disaster Reduction, IDNDR, (in Japanese, English, Español and Français)

  • Musson RM (1994) A short history of Intensity and intensity scales. http://www.earthquakes.bgs.ac.uk/hazard/History_intensity.htm

  • Musson RM (2009) Intensity and intensity scales. In New Manual of Seismological Observatory Practice (NMSOP). Deutsches GeoForschungsZentrum GFZ, pp 1–20

  • Musson RMW, Cecić I (2011) Intensity and Intensity Scales. Chapter. 12. https://doi.org/10.2312/GFZ.NMSOP-2_ch12

  • Nakamura Y, Saita J, Sato T (2011) On an earthquake early warning system (EEW) and its applications. Soil Dyn Earthq Eng 31(2):127–136. https://doi.org/10.1016/j.soildyn.2010.04.012

    Article  Google Scholar 

  • Needham J (1959) Science and civilization in China. Em Mathematics and the Sciences of the Heavens and the Earth (vol 3)

  • Nègre V (2010) Notes sur Jean Rondelet et August Choisy. Em L'Architecture et l' art de bâtir

  • Newmark NM, Rosenblueth E (1971) Fundamentals of earthquake engineering. Prentice Hall

    Google Scholar 

  • NGDC Catalog (1994) Present: Seismicity Catalog Collection, 2150 BC to 1996 AD. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.hazards:G01318

  • Nievas CI, Bommer JJ, Crowley H, van Elk J, Ntinalexis M, Sangirardi M (2020) A database of damaging small-to-medium magnitude earthquakes. J Seismol 24(2):263–292. https://doi.org/10.1007/s10950-019-09897-0

    Article  Google Scholar 

  • Norris CH, Hansen RJ, Holley MJ, Biggs M, Namyet S, Minami JV (1959) Structural design for dynamic loads. McGraw-Hill

    Google Scholar 

  • Nunes R (2017) Constructive characterization of pombaline buildings and simplified pushover analysis of frontal walls. MSc Thesis. Faculdade de Ciência e Tecnologia da Universidade Nova de Lisboa

  • Ogasawara S, Katsuhisa Kanda K, Suzuki Y (2021) Damage investigation of non-structural components in buildings with SHM system in the 2018 Osaka Earthquake. In: Proceedings of the 15th World Conference on Earthquake Engineering (17WCEE). Vancouver

  • Oldham RD (1899) Report on the great earthquake of 12th June 1897 volume 29. Rarebooksclub.com

  • Oliveira CS, Ferreira MA (2021a) Following the vídeo surveillance and personal video cameras: new tools and innovations to health monitor the earthquake wave field. Int J Disaster Risk Reduct. https://doi.org/10.1016/j.ijdrr.2021a.102489

    Article  Google Scholar 

  • Oliveira CS, Lemos JV (2021b) Back-analysis of the Collapse of a Tetrastyle Canopy during the April 25, 2015 Nepal Earthquake. Int J Architect Heritage: Conserv Anal Restorat. https://doi.org/10.1080/15583058.2021b.1925781

    Article  Google Scholar 

  • Oliveira CS, Ferreira MA, Mota de Sá FM (2012) New indicators to measure the impact of earthquakes in urban systems: from SIRIUS (Seismic risk indicator in urban áreas) to DI (Disruption índex). Giornata in onore e in memoria del Professor Giuseppe Grandori, pp 409–414

  • Oliveira SM (2021c) Personal Communication

  • Olson S (2003) Legislative Politics and Seismic Safety: California’s Early Years and the‘“Field Act”,’ 1925–1933. Earthq Spectra 19(1):111–131

    Article  Google Scholar 

  • Pagani M, Garcia J, Monelli D, Weatherill G, Smolka A (2015) A summary of hazard datasets and guidelines supported by the Global Earthquake Model during the first implementation phase. Ann Geophys. https://doi.org/10.4401/ag-6677

    Article  Google Scholar 

  • Parisse F, Cattari S, Marques R, Lourenço PB, Magenes G, Beyer K, Calderoni B, Camata G, Cordasco EA, Erberik MA, İçel C, Karakaya M, Malomo D, Manzini CF, Marano C, Messali F, Occhipinti G, Pantò B, Saygılı Ö, Sousamli M (2021) Benchmarking the seismic assessment of unreinforced masonry buildings from a blind prediction test. Structures 31:982–1005. https://doi.org/10.1016/j.istruc.2021.01.096

    Article  Google Scholar 

  • Peng C, Jiang P, Ma Q, Wu P, Su J, Zheng Y, Yang J (2021) Performance evaluation of an earthquake early warning system in the 2019–2020 M6.0 Changning, Sichuan, China, seismic sequence. Front Earth Sci. https://doi.org/10.3389/feart.2021.699941

    Article  Google Scholar 

  • Pereira de Sousa FL (1919) O Terremoto do 1º Novembro de 1755 em Portugal e um Estudo Demográfico (Serviços Geológicos de Portugal, Ed. Vol I-IV) (in Portuguese)

  • Platt S (2017) Factors affecting the speed and quality of post disaster recovery and resilience. In: Rupakhety Em R, Olafsson S (eds.), Earthquake Engineering and Structural Dynamics in memory of Prof. Ragnar Sigbjörnsson: selected topics. Geotechnical, Geological and Earthquake Enginnering. Springer, New York

  • Poland CD, Hill J, Sharpe RL, Soulages J et al (1995) Vision 2000 Performance based seismic engineering of buildings. Structural Engineers Association of California, Sacramento

    Google Scholar 

  • Poljanšek K, Ferrer M (2017) Science for disaster risk management, 2017: Knowing better and losing less. EUR 28034 EN, Publications Office of the European Union (Clark I, ed)

  • Porter KA (1995) An overview of PEER’s performance-based earthquake engineering methodology. Em Nine International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9)

  • Priestley MJN (2003) Myths and Fallacies in Earthquake Engineering. IUSS Press, Revised

    Google Scholar 

  • Quaresma I, Zêzere J (2012) Disastrous Floods and Lanslides in Portugal in the 20th Century. European Geosciences Union, Wienna

  • Rafliana I, Jalayer F, Hancilar U (2022) Tsunami risk communication and management: contemporary gaps and challenges. Int J Disaster Risk Reduct. https://doi.org/10.1016//j.ijdrr.2021.102771

  • Reicherter K, Michetti AM, Silva PG (2009) Palaeoseismology: historical and prehistorical record of earthquake ground effects. Geological Society. London Spec. Publication 316. GSL Publishing Hous, London

  • Reicherter K, Pérez-López R, Silva PG, Pascua MR, Monroy VG, Suarez G (2012) 3rd INQUA-IGCP 567 International Workshop on Earthquake Geology, Palaeoseismology and Archaeoseismology

  • Reid HF (1911) The mechanics of the earthquake. The California Earthquake of April 18, 1906. In: Report of the State Earthquake Investigation Commission (Vol. 2). Carnegie Institution of Washington

  • Reitherman RK (2012a) Earthquakes and engineers: an international history. ASCE Press

  • Reitherman RK (2012b) Five Major themes in the history of earthquake engineering. In: Proceedings of the Fifteen World Conference for Earthquake Engineering. Lisbon

  • RocFall software (2019) (https://www.rocscience.com/software/rocfall/program-updates)

  • Rodrigues MCM, Oliveira CS (2020) Considering spatial memory to estimate seismic risk: the case of the Azores Archipelago. GEM. International Journal on Geomathematics, 11(1). https://Doi.org/https://doi.org/10.1007/s13137-020-00152-0

  • Rondelet J (1802) Traite Theorique Et Pratique de l’Art de Batir. Tome 1- 5 (Ed.1802–1817). Hachette Livre - BNF. (in french)

  • Rossi MS, Forel FA (1881) The Rossi-Forel Scale of earthquake intensity. Publ Astron Soc Pac 7(41):123–125

    Google Scholar 

  • Rupakhety R, Candeias P, Sigurosson GO, Olafsson S (2018) Numerical and Experimental study of household furniture rocking against walls: Shaketable tests in KnowRISK. In: Rupakhety R, Ólafson S (Eds) Earthquake engineering and structural dynamics in memory of Ragnar Sigbjörnsson. Geotechnical, Geological and Earthquake Engineering 44. Ch 1. https://doi.org/10.1007/978-3-319-62099-2_1

  • Saffir-Simpson Hurricane Wind Scale (1974) (https://www.weather.gov/mfl/saffirsimpson)

  • Salazar D et al (2022) Did a 3800-year-old Mw ~9.5 earthquake trigger major social disruption in the Atacama Desert? Sci Adv 8:eabm2996

    Article  Google Scholar 

  • Samardjieva E, Badal J (2002) Estimation of the expected number of casualties caused by strong earthquakes. Bull Seismol Soc Am 92(6):2310–2322. https://doi.org/10.1785/0120010112

    Article  Google Scholar 

  • Santos V (1989) Descrição do sistema construtivo do Pombalino. MSc Thesis, Faculdade de Arquitectura da Universidade Técnica de Lisboa. (in portuguese)

  • Savage N (2018) New movement in seismology. Commun ACM 61(11)

  • Sbarra P, Tosi P, De Rubeis V, Rovelli A (2012) Influence of observation floor and building height on macroseimic intensity. Seismol Res Lett 2. https://doi.org/10.1785/gssrl.83.2.261

    Article  Google Scholar 

  • Sbarra P, Tosi P, De Rubeis V, Sorrentino D (2020) Quantification of earthquake diagnostic effects to assess low macroseismic intensities. Natural Hazards (dordrecht, Netherlands) 104(3):1957–1973. https://doi.org/10.1007/s11069-020-04256-6

    Article  Google Scholar 

  • Sbarra P, Tosi P, De Rubeis V, Sorrentino D (2021) Is an Earthquake Felt Inside a Car? Seismol Res Lett 92(3):2028–2035

    Article  Google Scholar 

  • Scibilia F (2017) Earthquake-resistant construction techniques in Italy between 1880 and 1910: alternatives to reinforced concrete. Construction History: International Journal of the Construction History Society 32:63–82

    Google Scholar 

  • Scudero S, D’Alessandro A, Greco L, Vitale G (2018) MEM technology in seismology: a short review. https://doi.org/10.1109/EE1.2018.8385252

  • SEAOC Blue Book (1959,…2019) Seismic Design Recommendations. Seismology Committee Structural Engineers Association of California

  • SENDAI (2015–2030) (https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030)

  • Seebach KAL (1873) Das mitteldeutsche erbbeben von 6 Marz 1872. Ein Beitrag zu der Lehre von den Erdbebeben, Leipzig ((in german))

    Google Scholar 

  • Shah HC (2006) The last mile: earthquake risk mitigation assistance in develo** countries. Philos Trans Ser A Math Phys Eng Sci 364(1845):2183–2189. https://doi.org/10.1098/rsta.2006.1821

  • Silva V (2022) Personal Communication

  • Silva V, Amo-Oduro D, Calderon A, Dabbeek J, Despotaki V, Martins L, Rao A, Simionato M, Vigano D, Yepes C, Acevedo A, Crowley H, Horspool N, Jaiswal K, Journeay M, Pittore M (2018) Global earthquake model (GEM) risk map. Glob Earthq Model Found

  • Silva PG, Bardají T, Roquero E et al (2015) Seismic paleogeography of coastal zones in the Iberian Peninsula: understanding ancient and historic earthquakes in Spain. Cuat Geomorfol 29(1–2):31–56. https://doi.org/10.17735/cyg.v29i1-2.31012.(inspanish)

    Article  Google Scholar 

  • Signalert.net (2021) A New Simplified Intensity Scale to Describe Earthquakes and Impacts with A Smartphone APP. (https://www.preventionweb.net/news/fixed-smartphone-network-offers-inexpensive-earthquake-early-warning-potential?utm_campaign=PreventionSavesLives&utm_source=LinkedIn)

  • Sleeswyk AW, Sivin N (1983) Dragons and Toads. The Chinese Seismoscope of A.D. 132. Chinese Science 6:1–19

    Google Scholar 

  • Sorrentino L (2007) The early entrance of dynamics in earthquake engineering: Arturo Danusso’s contribution. ISET J Earthq Technol 44(1):1–24

    Google Scholar 

  • Spence R (2014a) The full-scale laboratory: the practice of post-earthquake reconnaissance missions and their contribution to earthquake engineering. The Third Nicholas Ambraseys Lecture. In A. Ansal (ed.), Perspectives on European Earthquake Engineering and Seismology, Geotechnical, Geological and Earthquake Engineering 34 Ch 1: 1–51, Doi https://doi.org/10.1007/978-3-319-07118-3_1

  • Spence R, Foulser-Piggott R, Grunthal G, Musson R, Schwartz J, Wenk T (2014b) The international macroseismic scale-extending EMS-98 for global application. In: Proceedings of the 2nd European conference on earthquake engineering

  • Spudich M, Chiou BSJ (2008) Directivity in NGA earthquake ground motions: analysis using Isochrone Theory Paul. Earthq Spectra 24(1):279–298

    Article  Google Scholar 

  • Stellacci S, Ruggieri N, Rato V (2016) Gaiola vs Borbone system: a comparison between 18th Century anti-seismic case studies. International Journal of Architectural Heritage 10(6):817–828

    Article  Google Scholar 

  • Stewar JP, Midorikawa S, Graves RW, Khodaverdi K, Kishida T, Miura H, Bozorgnia Y, Campbell M (2013) Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters. Earthquake Spectra 29(1_suppl):1–21. https://doi.org/10.1193/1.4000115

  • Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Giardini D (2013) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol 17(2):523–544. https://doi.org/10.1007/s10950-012-9335-2

    Article  Google Scholar 

  • Sun JJ, Yuan YF, Wen ZP, Li XJ, Du W, Lin JQ et al (2008) The Chinese seismic intensity scale. China National Standard, GB, 17742 (in Chinese)

  • Takagi J, Wada A (2017) Recent earthquakes and the need for a new philosophy for earthquake-resistant design. J Soil Dyn. https://doi.org/10.1016/j.soildyn.2017.11.024

    Article  Google Scholar 

  • Tavares A, Costa AG, Oliveira CS (2021) Effects of the 1755 Lisbon earthquake on rivers and corresponding comparative proposal on intensity scale. Proceedings, Rehabend 2022, Construction Pathology, Rehabilitation Technology and Heritage Management. Code #336

  • Toader VE, Moldovan IA, Mihai A (2019) Forecast earthquakes using acoustic emission (fracture). Section applied and environmental geophysics - internat multi-disciplaire scientific geoconference, Sofia, vol 19, ed 1.1. https://doi.org/10.5593/sgem2019/1.1/S.05.100

  • Timoshenko SP (1948) Théorie de l'Élasticité. In: Béranger LPC (ed) (in French)

  • Timoshenko SP, Young DH (1990) Vibration problems in engineering, 5th edn. Wiley, New York

    Google Scholar 

  • Todorovksa MI (2009a) Introduction to the special issue on rotational seismology and engineering applications. Bull Seismol Soc Am 175

  • Todorovska MI (2009b) Soil–Structure system identification of millikan library north-south response during four earthquakes (1970–2002): what caused the observed wandering of the system frequencies? Bull Seismol Soc Am 99(2A):626–635. https://doi.org/10.1785/0120080333

    Article  Google Scholar 

  • Tosi P, De Rubeis V, Sbarra P, Sorrentino (2021) Attenuation differences among transient macroseismic effects. In: 37th General Assembly of ESC-2021

  • Trifunac MD (2006) Biot response spectrum. Soil Dyn Earthq Eng 26(6–7):491–500. https://doi.org/10.1016/j.soildyn.2006.01.004

    Article  Google Scholar 

  • Trifunac MD (2009) 75th Anniversary of strong motion observation—A historical review. Soil Dyn Earthq Eng 29(2009):591–606. https://doi.org/10.1016/j.soildyn.2008.05.011

    Article  Google Scholar 

  • Trifunac MD, Todorovska MI (2001) Evolution of accelerographs, data processing, strong motion arrays and amplitude and spatial resolution in recording strong earthquake motion. Soil Dyn Earthq Eng 21(6):537–555. https://doi.org/10.1016/S0267-7261(01)00013-6

    Article  Google Scholar 

  • TURNKey (2021) Towards more earthquake-resilient urban societies through a multi-sensor-based information system enabling earthquake forecasting, early warning and rapid response actions. EU Project. H2020

  • UBC - Uniform Building Code (1943) Los Angeles Edition of the Berkeley.Edu. Retrieved January 12, 2022, from https://digitalassets.lib.berkeley.edu/ubc/UBC_1943.pdf

  • UBC (1988, 1997) Uniform Building Code

  • UNDRR (2019) Global assessment report on disaster risk reduction 2019. https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019

  • USGS (2021) https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics

  • Valles C, Marin Ferrer A, Poljanšek M (2020b) Science for Disaster Risk Management 2020b: acting today, protecting tomorrow, EUR 30183 EN, Publications Office of the European Union (I. Clark, Ed.)

  • Van Gils JM, Leydecker G (1991) Catalogue of European earthquakes with intensities higher than 4. European Commission

  • Varga P (2008) History of early isoseismal maps. Acta Geodesica Geophaphy Hungary 43(2–3):285–307. https://doi.org/10.1556/AGeod.43.2008.2-3.15

    Article  Google Scholar 

  • Varga P, Timár G, Kiszely M (2015) Two Hundred Years Ago the Dissertatio de terrae motu Mórensiand the First Isoseismal Map Appeared. Seismol Res Lett 86(5):1432–1437. https://doi.org/10.1785/0220150076

    Article  Google Scholar 

  • Velazquez O, Pescaroli G, Cremen G, Galasso C (2020) A review of the technical and Socio-organizational components of earthquake early warning systems. Front Earth Sci. https://doi.org/10.3389/feart.2020.533498

    Article  Google Scholar 

  • Vincenzo Ferraresi (1788) Casa–tipo Baraccata. Stamperia Reale di Napoli. (in Italian)

  • Vivenzio G (1783) Istoria e teoria de' tremoti in generale, ed in particolare di quelli della Calabria e di Messina del 1783. Napoli: Nela Stamperia Regale. (in italian)

  • Vitruvius, Marcus Pollio (1st Century BC). De Architectura. Ed. J. Sulpicius (1486). 10 Volumes

  • Vranes K (2009) Personal communication

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity and Modified Mercalli Intensity in California. Earthq Spectra 15(3):557–564

    Article  Google Scholar 

  • Wald DJ, Jaiswal K, Marano KD, Bausch D, Hearne M (2010) PAGER–Rapid assessment of an earthquakes impact. Fact Sheet 2010-3036. https://doi.org/10.3133/fs20103036

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Worden CB, Hopper M, Dewey JW (2012) USGS “Did You Feel It?” Annals of Geophysics, Internet-based Macroseismic Intensity Maps. https://doi.org/10.4401/ag-5354

    Book  Google Scholar 

  • Wang J (2004) Historical earthquake investigation and research in China. Ann Geophys 47(2/3):831–838

    Google Scholar 

  • Wang J, He Z, Weng W (2020) A review of the research into the relations between hazards in multi-hazard risk analysis. Natural Hazards (dordrecht, Netherlands) 104(3):2003–2026. https://doi.org/10.1007/s11069-020-04259-3

    Article  Google Scholar 

  • We Architects (2021) https://wearchitects.eu/about-us/

  • Whitman RV (1998) Earthquake loss estimation methodology. In: Vogel A, Brandes K (eds)

  • Wilson EL (1970) SAP: a general structural analysis program. Structural Engineering Laboratory. University of California, Berkeley. Report (UCBSEL #70-24)

  • Wilson EL, Bathe KJ, Peterson FE, Dovey HH (1973) SAP—A structural analysis program for linear systems. Nucl Eng Des 25(2):257–274. https://doi.org/10.1016/0029-5493(73)90048-4

    Article  Google Scholar 

  • Wood HO, Neumann F (1931) Modified Mercalli intensity scale of 1931(MMI). Bull Seismol Soc Am 21(4):277–283

    Article  Google Scholar 

  • Wright JR (2021) A seismometer that can search for pre-quake signals, the expanded version. Unpublished. https://doi.org/10.13140/RG.2.2.26444.54403

  • Wright JR (2020) A multivariable, two-dimensional plot of electromagnetic, electric field and seismic information for the characterization of earthquake precursors. Open J Geol 10(03):213–234. https://doi.org/10.4236/ojg.2020.103012

    Article  Google Scholar 

  • **e Y, Ebad Sichani M, Padgett JE, DesRoches R (2020) The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthq Spectra 36(4):1769–1801. https://doi.org/10.1177/8755293020919419

    Article  Google Scholar 

  • Zollo A, Amoroso O, Lancieri M, Wu Y-M, Kanamori H (2010) A threshold-based earthquake early warning using dense accelerometer networks. Geophys J Int 183:963–974. https://doi.org/10.1111/j.1365-246X.2010.04765.x

    Article  Google Scholar 

  • http://media.gfz-potsdam.de/gfz/sec26/resources/documents/PDF/EMS-98_Original_englisch.pdf

  • http://mpec.sc.mahidol.ac.th/radok/physmath/mat12/sec41.htm

  • https://www.msn.com/en-us/feed Seismology with optical links: enabling a global network for submarine earthquake monitoring

  • https://www.thehindubusinessline.com/news/world/natural-disasters-cost-world-232-billion-in-2019-report/article30734618.ece

  • http://heaton.caltech.edu/

  • http://csn.caltech.edu/, accessed 2021/01/15)

  • https://quakecatcher.net/, accessed 2021/01/15)

  • https://upload.wikimedia.org/wikipedia/commons/a/a1/Corbusierhaus_B-Westend_06-2017.jpg

  • https://gfzpublic.gfz-potsdam.de/pubman/item/item_245308

  • https://en.wikipedia.org/wiki/List_of_earthquakes_in_2021

  • https://en.wikipedia.org/wiki/List_of_historical_earthquakes .

  • https://www.iccrom.org/news/earthquake-heritage-examples-japan

  • https://calatrava.com/biography.html

  • https://www.strongmotioncenter.org/vdc/scripts/stnpage.plx?

  • https://earthdata.nasa.gov/learn/backgrounders/what-is-sar

  • https://www.usgs.gov/programs/VHP/insar-satellite-based-technique-captures-overall-deformation-picture

  • https://spacedata.copernicus.eu/data-provision-status/copernicus-land-monitoring-service

Download references

Acknowledgements

To all Family members and friends that helped me have the time to study and think. To Colleagues and students that helped me in creating or solving problems. To the Colleagues and friends who helped process data and prepared this text. To Humberto Varum from the University of Oporto for all comments and suggestions when revising the manuscript. The author is grateful for the Portuguese Foundation for Science and Technology's support through partial funding UIDB/04625/2020 from the research unit CERIS.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sousa Oliveira.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 13 kb)

Appendices

Appendix 1: References of interest related to the subject matter but not cited in the text

  1. 1.

    Aki, K. & Richards, P. G. (1980). Quantitative seismology: theory and methods (Vol. 859). San Francisco, CA: Freeman.

  2. 2.

    Aldea, A. (n.d.). Seismic Motions: Examples of application in earthquake Engineering. (https://www.emag.ro/seismic-motions-examples-of-application-in-earthquake-engineering-alexandru-aldea-editor-smq0/pd/DHX49VBBM/)

  3. 3.

    Alexander, D. (2001). Natural Disasters. Edition Routledge. Taylor & Francis Group NY and London.

  4. 4.

    Ambraseys, N. N. (1962). Data for the investigation of the seismic sea waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America, 52, 895–913.

  5. 5.

    Ambraseys, N. N. (1971). Value of historical records of earthquakes. Nature, 232, 375–379.

  6. 6.

    Ambraseys, N. N. (1988). Engineering Seismology. Engineering Seismology. Earthquake Engineering and Structural Dynamics, 17, 1–105.

  7. 7.

    Ambraseys, N. N., Adams, R. D., & Adams, R. (2000). Seismicity of Central America. Imperial College Press.

  8. 8.

    Amendola, H.-J., & Casale, A. (1995). Natural Risk and Civil Protection. E & FN SPONCE.

  9. 9.

    Andrianova, Z. S. (2012). Seismic love waves. Springer Science & Business Media.

  10. 10.

    Ansal, A. (2006). Recent Advances in Earthquake Geotechnical Engineering and Microzonation. Springer.

  11. 11.

    Ansal, A. (2015). Perspectives on European Earthquake Engineering and Seismology. Springer.

  12. 12.

    Atalić, J., Uroš, M., Novak, M. S., Demšić, M., & Nastev, M. (2021). The Mw5.4 Zagreb (Croatia) earthquake of March 22, 2020: Impacts and response. Bulletin of Earthquake Engineering, 1–29. https://doi.org/10.1007/s10518-021-01117-w.

  13. 13.

    ATC-3 Applied Technology Council. (1973). https://www.atcouncil.org/58-frontpage?start=10

  14. 14.

    ATC-Applied Technology Council. (2018). Tentative provisions for the development of seismic regulations for buildings: A cooperative effort with the design professions, building code interests and the research community (classic reprint). Forgotten Books.

  15. 15.

    ATC (1978). Tentative Provisions for the Development of Seismic Regulations for Buildings (ATC 3–06), AppliedTechnology Council, Redwood City, CA. (A second printing, in 1984, includes 1982 amendments.)

  16. 16.

    Arfken, G. B., & Weber, H. J. (1995). Mathematical methods for physicists (4th ed.). Academic Press.

  17. 17.

    Armouti, N. (2015). Earthquake Engineering. Theory and Implementation with the 2015 International Building Code. McGraw Hill Professional.

  18. 18.

    Arrighi, C., Tanganelli, M., Cristofaro, M. T., Cardinali, V., Marra, A., Castelli, F., & De Stefano, M. (2021). Multi‑risk assessment in a historical city. Natural Hazards. https://doi.org/10.1007/s11069-021-05125-6

  19. 19.

    Aschheim, M., Hernandez-Montes, E., & Vamvatsikos, D. (2019). Design of Reinforced Concrete Buildings for Seismic Performance. CRC Press.

  20. 20.

    Avramidis, I., Athanatopoulou, A., Morfidis, K., Sextos, A., & Giaralis, A. (2016). Eurocode Compliant Seismic Analysis and Design of R/C Buildings. Concepts, Commentary and Worked Examples with Flowcharts.

  21. 21.

    Babuska, V., & Cara, M. (1991). Seismic anisotropy in the Earth (Vol. 10). Springer Science & Business Media.

  22. 22.

    Badal, J., & Serón, F. J. (1986). Elementos Finitos y Ondas Sismicas Superficiales. (in spanish).

  23. 23.

    Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized critically. Physics Review, A, 38, 364–374.

  24. 24.

    Bakun, W. W. H., & Wentworth, C. M. (1997). Estimating earthquake location and magnitude from intensity data. Bulletin of the Seismological Society of America. (Vol. 87).

  25. 25.

    Balch, A. H., & Lee, M. (n.d.). Vertical seismic profiling: Technique, applications, and case histories.

  26. 26.

    Bangash, M. Y. H. (2011). Earthquake Resistant Buildings. Dynamic Analyses, Numerical Computations, Codified Methods, Case Studies and Examples. Springer.

  27. 27.

    Båth, M. (2013). Mathematical Aspects of Seismology: Developments in Solid Earth Geophysics. Elsevier.

  28. 28.

    Bathe, K. J. (1996). Finite element procedures (p. 1037). Englewood Cliffs: Prentice-Hall.

  29. 29.

    Beer, M., Kougioumtzoglou, I. A., Patelli, E., & Au, I. (2016). Encyclopedia of Earthquake Engineering. Springer.

  30. 30.

    Benjamin, J. R., & Allin Cornell, C. (1970). Probability, statistics and decisions for civil engineers. McGraw-Hill.

  31. 31.

    Ben-Menahem, A., & Singh, S. J. (2012). Seismic Waves and Sources (1981st ed.). Springer.

  32. 32.

    Bilham, R. (2019). Himalayan earthquakes: a review of historical seismicity and early twenty-first century slip potential. The Geological Society of London.

  33. 33.

    Bollinger, G. A. (2018). Blast Vibration Analysis. Dover Publications.

  34. 34.

    Bolt, B. (2005). Earthquakes: 2006 Centennial Update. The 1906 Big One. W.H.Freeman and Company.

  35. 35.

    Bolt, B. (Ed.). (2012). Seismic strong motion synthetics. Elsevier.

  36. 36.

    Bolt, B. A. (1973). The great Alaska earthquake of 1964: Seismology and geodesy. Bulletin of the Seismological Society of America, 63(2), 740–742. https://doi.org/10.1785/bssa0630020740

  37. 37.

    Bolt, B. A. (1976). Nuclear explosions and earthquakes: Parted veil. W.H. Freeman.

  38. 38.

    Bolt, B. A. (1993). Earthquakes and geological discovery. Scientific American Library.

  39. 39.

    Bolt, B. A., & Vallina, A. U. (1981). Terremotos. Reverté. (in spanish).

  40. 40.

    Bonito, M. (1691). Terra Tremente.

  41. 41.

    Bonnin, J., & Cara, M. (1988). Seismic Hazard in Mediterranean Regions. Kluwer Academic Publishers.

  42. 42.

    Bossu, R., Landès, M., Roussel, F., Steed, R., Mazet-Roux, G., Martin, S. S., & Hough, S. (2017). Thumbnail‐based questionnaires for the rapid and efficient collection of macroseismic data from global earthquakes. Seismological Research Letters, 88(1), 72–81. https://doi.org/10.1785/0220160120

  43. 43.

    Bozorgnia, Y., & Bertero, V. V. (2004). Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering. CRC Press.

  44. 44.

    Brazee, R. J. (1978). Reevaluation of Mercalli Modified intensity scale for earthquakes using distant as determinant. NOAA Tech. Mem EDS NGSDC-4.

  45. 45.

    Brebbia, C. A. (2015). Earthquake Resistant Engineering Structures X. WIT Press.

  46. 46.

    Brooks, B. A., Protti, M., Ericksen, T., Bunn, J., Vega, F., Cochran, E. S., … & Glennie, C. L. (2021). Robust earthquake early warning at a fraction of the cost: ASTUTI Costa Rica. AGU Advances2(3), https://doi.org/10.1029/2021AV000407.

  47. 47.

    Bruce, W. E., & Byerlee, L. D. (1966). Stick Slip as a mechanism for Earthquakes. Science, 153, 990–992.

  48. 48.

    Brune, J. N. (1970). Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquake. Journal of Geophysical Research, 75, 4997–5009.

  49. 49.

    BSSC (2015). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, 2000 Edition, Part 1—Provisions (FEMA P-1050). Building Seismic Safety Council, Washington, D.C.

  50. 50.

    BSSC (2001b). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, 2000 Edition, Part 2—Commentary (FEMA 369). Building Seismic Safety Council, Washington, D.C., March.

  51. 51.

    Buchanan, A., Des Bull; Rajesh Dhakal, R., Macrae, G., Palermo, A., & Pampanin, S. (2011). Base Isolation and Damage-Resistant Technologies for Improved Seismic Performance of Buildings, Department of Civil and Natural Resources Engineering University of Canterbury Christchurch, New Zealand.

  52. 52.

    Bullen, K. E., & Bolt, B. A. (1985). An introduction to the theory of seismology (B. A. Bolt, Ed.; 4th ed.). Cambridge University Press.

  53. 53.

    Burns, D. (Ed.). (2017). Earthquake Engineering. Larsen and Keller Education.

  54. 54.

    Burridge, R., & Knoppoff, L. (1967). Model and theoretical Seismicity. Bulletin of the Seismological Society of America, 57, 341–371.

  55. 55.

    Cakmak, A. S. (Ed.). (1987). Ground Motion and Engineering Seismology, Developments in Geotechnical Engineering #44. Elsevier.

  56. 56.

    Calonico2(2017). ar**v.org > physics > ar**v:1801.02698 ar**v.org e-Print archive. (n.d.). In ar**v. Retrieved January 10, 2022, from https://arxiv.org/

  57. 57.

    Calvi, G. M., Turino, R., & Fuchs, R. (2010). L ́Aquila: Il Progetto C. A. S. E. (in italian).

  58. 58.

    Cancani, A. (1904). Sur l'emploi dune double echelle sismique des intensitès, empirique et absolute. Gerlands Beitr Geophysics, 2, 281–283. (in french).

  59. 59.

    Casciati, F., & Faravelli, L. (1991). Fragility analysis of complex structural systems. John Wiley & Sons.

  60. 60.

    Cerveny, V. (2001). Seismic ray theory. Cambridge University Press.

  61. 61.

    Cetin, K. O., Cakir, E., Ilgac, M., Gizem, C. G., Soylemez, B., Elsaid, A., Cuceoglu, F., Gulerce, Z., Askan, A., Aydin, S., & Gor, M. (2021). Geotechnical aspects of reconnaissance findings after 2020 January 24th, M6. 8 Sivrice–Elazig–Turkey earthquake. Bulletin of Earthquake Engineering, 1–45.

  62. 62.

    Chapman, C. (2004). Fundamentals of seismic wave propagation. Cambridge University Press.

  63. 63.

    Charles, J. A., Abbiss, C. P., Gosschalk, E. M., & Hinks, J. (1991). An engineering guide to seismic risk to dams in the United Kingdom: (BR 210). IHS BRE Press.

  64. 64.

    Cheldze, T., & Matcharashwill, T. (2015). Dyamical patterns in seismology. In C. Webber & N. Maneaa (Eds.), Recurrence Quantification, Analysis, Theory and Best Practices (pp. 241–335). Springer.

  65. 65.

    Chelidze, T., Vallianatos, F., & Telesca, L. (2018). Complexity of Seismic Times Series: Measurements and application. Elsevier.

  66. 66.

    Chen, W.-F., & Duan, L. (2014). Bridge Engineering Handbook. Fundamentals. CRC Press.

  67. 67.

    Chen, W.-F., & Scawthorn, C. (2003). Earthquake Engineering Handbook. CRC Press.

  68. 68.

    Cheng, F. Y., Jiang, H., & Lou, K. (2008). Smart structures: Innovative systems for seismic response control. CRC Press.

  69. 69.

    Cheng. F. Y. (2000). Matrix analysis of structural dynamics: Applications and earthquake engineering. Marcel Dekker, NY.

  70. 70.

    Chopra, A. K. (2001). Dynamics of structures: Theory and applications to earthquake engineering (2nd ed.). Pearson.

  71. 71.

    Chung, A. I., Neighbors, C., Belmonte, A., Miller, M., Sepulveda, H. H., Christensen, C., Jakka, R. S., Cochran, E. S., & Lawrence, J. F. (2011). The quake-catcher network rapid aftershock mobilization program following the 2010 M 8.8 Maule, Chile earthquake. Seismological Research Letters, 82(4), 526–532. https://doi.org/10.1785/gssrl.82.4.526

  72. 72.

    Cisternas, A. (2009). Montessus de Ballore, a pioneer of seismology: The man and his work. Physics of the Earth and Planetary Interiors, 175(1–2), 3–7. https://doi.org/10.1016/j.pepi.2007.09.006

  73. 73.

    Coleman, W. (2016). Earthquakes—monitoring technology, disaster management & impact assessmen. Nova Science.

  74. 74.

    Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606. https://doi.org/10.1785/bssa0580051583

  75. 75.

    Costain, J. K., & Oruh, C. (2004). Basic theory of exploration seismology. Handbook of geophysical exploration: Seismic exploration, volume 1. Elsevier Science & Technology.

  76. 76.

    Coulomb, J., & Jobert, G. (1976). Traité de géophysique interne. Masson.

  77. 77.

    CTV News [CTVNews]. (2020, August 7). New videos of Beirut massive explosion emerging online. Youtube. https://www.youtube.com/watch?v=avgBgc210bg

  78. 78.

    Dahlen, F. A., & Tromp, J. (2020). Theoretical Global Seismology. Princeton University Press. https://doi.org/10.2307/j.ctv131bvfd

  79. 79.

    Dalguer, L. A., Fukushima, Y., Irikura, K., & Wu, C. (Eds.). (2018). Best practices in physics-based fault rupture models for seismic hazard assessment of nuclear installations (1st ed.). Birkhauser.

  80. 80.

    Davidovici, V. (1985). Génie parasismique. Presses de l’Ecole Nationale des Ponts et Chaussées. (in french).

  81. 81.

    Davidovici, V. (2017). Journée technique AFPS, « Renforcement au séisme des constructions existantes. Commémoration des 50 ans du séisme d’Arette. AFPS, Lourdes—29 septembre 2017. (Power Point). (in french). http://www.afpsseisme.org/content/download/37520/846846/file/AFPS_2017_JT_Renforcement_07_Davidovici.pdf.

  82. 82.

    Davison, C. (1921). On scales of seismic intensity and on the Construction and use of Isoseismal Lines. Bulletin of the Seismological Society of America, 11(2), 95–130. https://doi.org/10.1785/bssa0110020095

  83. 83.

    Davison, C. (1933). Scales of seismic intensity: Supplementary paper. Bulletin of the Seismological Society of America, 23(4), 158–166. https://doi.org/10.1785/bssa0230040158

  84. 84.

    Davison, C. (2014). A Manual of Seismology. Cambridge University Press.

  85. 85.

    Day, R. (2001). Geotechnical Earthquake Engineering Handbook. McGraw-Hill Education.

  86. 86.

    de Boer, J. Z., & Sanders, D. T. (2007). Earthquakes in human history: The far-reaching effects of seismic disruptions. Princeton University Press.

  87. 87.

    Dengler, L. A., & Dewey, J. W. (1998). An intensity survey of households affected by the Northridge, California, earthquake of 17 January 1994. Bulletin of the Seismological Society of America, 88(2), 441–462. https://doi.org/10.1785/bssa0880020441

  88. 88.

    Diaz-Fanas, G., Garini, E., Ktenidou, O.-J., Gazetas, G., Vaxevanis, T., Lan, Y. J., Heintz, J., Ma, X., Korre, E., Valles-Mattox, R., Stavridis, A., Kim, I., Hernandez-Bassal, L., Anzola, E., Berkowitz, R., Hussain, S., Jalalian, A., Carrion, H., Dominguez Maldonado, V., … Nikolaou, S. (2020). ATC Mw7.1 Puebla–Morelos earthquake reconnaissance observations: Seismological, geotechnical, ground motions, site effects, and GIS map**. Earthquake Spectra, 36(2_suppl), 5–30. https://doi.org/10.1177/8755293020964828.

  89. 89.

    Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. https://doi.org/10.1029/jb084ib05p02161.

  90. 90.

    Dolce, M., Speranza, E., De Martino, G., Conte, C., & Giordano, F. (2021). The implementation of the Italian National Prevention Plan: A focus on the seismic upgrading of critical buildings. International Journal of Disaster Risk Reduction 62, (2021) 102,391. https://doi.org/10.1016/j.ijdrr.2021.102391.

  91. 91.

    Donnellan, A., Mora, P., Matsu’ura, M., & Yin, X.-C. (Eds.). (2004). Computational earthquake science part II (2004th ed.). Springer.

  92. 92.

    Donnellan, A., Mora, P., Mitsuhiro, M., & **ang-Chu, Y. (Eds.). (2004). Computational Earthquake Science Part I (2004th ed.). Birkhauser Verlag AG.

  93. 93.

    Doornbos, D. (1988). Seismological Algorithms. Academic Press.

  94. 94.

    Douglas, J., & Aochi, H. (2008). A survey of techniques for predicting earthquake ground motions for engineering purposes. Surveys in Geophysics, 29(3), 187–220. https://doi.org/10.1007/s10712-008-9046-y

  95. 95.

    Duggal, S. K. (2013). Earthquake resistant design of structures (2nd ed.). OUP.

  96. 96.

    Dowrick, D. J., Hancox, G. T., Perrin, N. D., & Dellow, G. D. (2008). The Modified Mercalli intensity scale. Bulletin of the New Zealand Society for Earthquake Engineering, 41(3), 193–205. https://doi.org/10.5459/bnzsee.41.3.193-205.

  97. 97.

    Ebel, J. E., & Wald, D. J. (2003). Bayesian estimations of peak ground acceleration and 5% damped spectral acceleration from modified Mercalli intensity data. Earthquake Spectra:19(3), 511–529. https://doi.org/10.1193/1.1596549.

  98. 98.

    EERI (1994). Henry J. Degenkolb (OHS-1), in Connections: The EERI Oral History Series, Earthquake EngineeringResearch Institute, Oakland.

  99. 99.

    Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7), 769–822. https://doi.org/10.1002/andp.19163540702. (in german).

  100. 100.

    Elghazouli, A. Y., & Castro, J. M. (2016). Introduction: Seismic design and Eurocode 8. In Seismic Design of Buildings to Eurocode 8 (pp. 15–20). CRC Press.

  101. 101.

    EOS, Transactions, American Geophysical Union, 92.

  102. 102.

    Estrada, H., & Lee, L. S. (2017). Introduction to Earthquake Engineering. CRC Press.

  103. 103.

    Ewing, W. M., & etc. (1957). Elastic waves in layered media. McGraw-Hill.

  104. 104.

    Farsangi, E. N., Noori, M., Gardoni, P., Takewaki, I., Varum, H. & Bogdanovic, A. (Editors) (2022). Reliability-Based Analysis and Design of Structures and Infrastructure. CRC Press, Taylor and Francis Group.

  105. 105.

    Fardis, M. N. (2009). Seismic design, assessment and retrofitting of concrete buildings: Based on EN-eurocode 8 (2009th ed.). Springer.

  106. 106.

    Ferreira, M. A., de Sá, F. M., & Oliveira, C. S. (2016). The Disruption Index (DI) as a tool to measure disaster mitigation strategies. Bulletin of Earthquake Engineering, 14(7), 1957–1977. https://doi.org/10.1007/s10518-015-9808-0

  107. 107.

    Ferreira, M. A., Oliveira, C. S., Mota de Sá, F., Lopes, M., & Pais, I. (2018). KnowRISK Portfolio of solutions: of household furniture rocking against walls: Shaketable tests in KnowRISK, ICEE Iceland.

  108. 108.

    Filiatrault, A. (2002). Elements of earthquake engineering and structural dynamics (2nd ed.). Polytechnic International Press.

  109. 109.

    Filiatrault, A., Perrone, D., Merino, R. J., & Calvi, G. M. (2021). Performance-based seismic design of nonstructural building elements. Journal of Earthquake Engineering, 25(2), 237–269. https://doi.org/10.1080/13632469.2018.1512910

  110. 110.

    Forel, F. A. (1881). Archives Scientifiques. Phys. Nat.vol 6.

  111. 111.

    Fortes, M. A. (1788). O Engenheiro Portuguez: Dividido em Dous Tratados. (in portuguese).

  112. 112.

    Fountain, H. (2018). Great quake: How the biggest earthquake in north America changed our understanding of the planet. Crown Publishing Group.

  113. 113.

    Fowler, C. (2013). The solid earth: An introduction to global geophysics (2nd ed.). Cambridge University Press.

  114. 114.

    Frechet, J., Meghraoui, M., & Stucchi, M. (Eds.). (2008). Historical seismology: Interdisciplinary studies of past and recent earthquakes (2008th ed.). Springer.

  115. 115.

    Fung, Y. C. (1965). Foundations of Solid Mechanics. Materials Sciences and Applications, 8, 525.

  116. 116.

    Galbis-Rodriguez, J. (1932). Catálogo Sísmico (entre los meridianos 5ºE y 20ºW de Greenwich y los Paralelos 45º y 25º N. Imprenta de Ramona Velasco, Viuda de Prudencio Pérez. (in spanish).

  117. 117.

    Garevski, M. (2012). Earthquakes and health monitoring of civil structures (M. Garevski, Ed.; 2013th ed.). Springer.

  118. 118.

    Garevski, M., & Ansal, A. (Eds.). (2010). Earthquake Engineering in Europe. Springer Netherlands.

  119. 119.

    Ger, J., & Cheng, F. Y. (2017). Seismic design aids for nonlinear pushover analysis of reinforced concrete and steel bridges. CRC Press.

  120. 120.

    Gibowicz, S. J. (1986). Physics of fracturing and seismic energy release: A review. Pure and Applied Geophysics, 124(4–5), 611–658. https://doi.org/10.1007/bf00879602

  121. 121.

    Giner-Robles, L., Martín-González, J., Pérez-López, F., Rodríguez-Pascua, R., & Silva, M. A. (2021). Oriented fall structures (earthquake archaeological effect). A review in instrumental earthquakes. 51–54.

  122. 122.

    Gioncu, V., & Mazzolani, E. F. (2003). Ductility of seismic-resistant steel structures. CRC Press.

  123. 123.

    Gioncu, V., & Mazzolani, F. M. (2011). Earthquake Engineering for Structural Design. CRC Press.

  124. 124.

    Girard, T., Wenzel, F., Khazai, B., Kunz-Plapp, T., Daniell, J. E., & Brink, S. A. (2014). Near-real-time analysis of publicly communicated disaster response information. International Journal of Disaster Risk Science, 5(3), 165–175. https://doi.org/10.1007/s13753-014-0024-3

  125. 125.

    GNSS Time Series (2020). Jet Propulsion Laboratory, California Institute of Technology (https://sideshow.jpl.nasa.gov/post/series.html).

  126. 126.

    Gradshteĭn, I. S., & Ryzhik, I.M. (2007). Table of integrals, series, and products (A. Jeffrey & D. Zwillinger, Eds.; 7th ed.). Academic Press.

  127. 127.

    Gubbins, D. (1990). Seismology and Plate Tectonics. Cambridge University Press.

  128. 128.

    Gueguen, P. (2013). Seismic vulnerability of structures. ISTE Ltd and John Wiley & Sons.

  129. 129.

    Guerreiro, L. (2007). Displacement Based Design Models for Base Isolated Historical Buildings, Chapter in Guidelines for Seismic Vulnerability Reduction in the Urban Environment (A. Plumier, Ed.). IUSS Press.

  130. 130.

    Gutenberg, B. (1936). Structure of the Earth 's Crust and the Spreading of Continents. Bulletin of Geological Society of America, 47, 1587–1610.

  131. 131.

    Hadjian, A. H. (2019). Basic Elements of Earthquake Engineering (1st ed.). John Wiley & Sons.

  132. 132.

    Hamilton, W., Knight of the Bath. (1783). In An Account of the Earthquakes Which Happened in Italy. The Royal Society. Philosophical Transactions. Vol. 73: 169–208.

  133. 133.

    Hammurabi's Code.(1795 BC). (https://www.history.com/topics/ancient-history/hammurabi).

  134. 134.

    Hanyga, A. (2014). Seismic wave propagation in the earth. Elsevier Science.

  135. 135.

    Haskell, N. A. (1964). Radiation Pattern of Surface Waves from Point Sources in a Multi-Layered Medium”. Bulletin of the Seismological Society of America, 54, 377–393.

  136. 136.

    Haskell, N. A. (1964b). Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults”. Bulletin of the Seismological Society of America, 54, 1811–1841.

  137. 137.

    Havskov, J., & Alguacil, G. (2016). Instrumentation in Earthquake Seismology. Springer International Publishing.

  138. 138.

    Hayakawa, M. (1999). Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Terra Scientific Publishing Company.

  139. 139.

    Heeres, O. M., & de Borst, R. (2001). Computational geomechanics with special reference to earthquake engineering, O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler and T. Shiomi, Wiley, Chichester, ISBN 0 471 98,285 7. International Journal for Numerical and Analytical Methods in Geomechanics, 25(1), 107–107.

  140. 140.

    Heitor, S., & Baptista, M. A. (n.d.). Historical Seismicity for Tsunami Catalogue. Instituto Geofísico Infante D. Luís (IGDL): Roman Empire 27BC-476 DC; 395 AD-480 AD. 395A–1453.

  141. 141.

    Helffrich, G., Wookey, J., & Bastow, I. (2013). The Seismic Analysis Code: A Primer and User’s Guide. Cambridge University Press.

  142. 142.

    Herráiz-Sarachaga, M. (2011). Conceptos Basicos de Sismologia para Ingenieros. CISMID. (in spanish).

  143. 143.

    Holmes, W. T. (1998). “The history of U.S. seismic code development,” Past, Present and Future Issues in Earthquake Engineering: The EERI Golden Anniversary Volume, 1948–1998, Earthquake Engineering Research Institute, p. 13–18.

  144. 144.

    Holtz, R. D. (1998). Geotechnical Earthquake Engineering and Soil Dynamics III. ASCE.

  145. 145.

    Hori, M. (2018). Introduction to computational earthquake engineering (third edition). World Scientific Europe.

  146. 146.

    Hosur, V. (n.d.). Earthquake-Resistant Design of Building Structures. Wiley Precise Textbook.

  147. 147.

    Hough, S. E. (2018). Earthshaking Science: What we know (and don't know) about earthquakes. Princeton University Press.

  148. 148.

    Housner, G. W. (1990). (Chairman) Competing against time. Report to Governor George Deukmejian from the Governor's Board of Inquiry on the 1989 Loma Prieta Earthquake

  149. 149.

    Hu, Y.-X. (2006). Earthquake Engineering. 2nd ed. Bei**g, China: Earthquake press.

  150. 150.

    Hu, Y.-X., Liu, S.-C., & Dong, W. (2019). Earthquake Engineering. CRC Press.

  151. 151.

    Hudson, J. A. (1984). Cambridge monographs on mechanics: The excitation and propagation of elastic waves. Cambridge University Press.

  152. 152.

    Huixian, L. (Editor) (1985). The 1976 Tangshan Earthquake. 5 vol (in chinese).

  153. 153.

    HYOGO Framework for Action (2005–2015). Building the Resilience of Nations and Communities to Disasters. International Strategy for Disaster Reduction, United Nations.

  154. 154.

    Iervolino, I. (2021). Dinamica delle Strutture e Ingegneria. (in italian).

  155. 155.

    Igel, H. (2016). Computational seismology: A practical introduction. Oxford University Press.

  156. 156.

    Imamura, F., & Papadopoulos, G. (2001). The Tsunami Intensity Scale. Int. Tsunami Symposium.

  157. 157.

    Inemura, L. (1972). Scale of Tsunami effects inland (R. Wiegel, Ed.).

  158. 158.

    Inglada, V. (1942). Estudio sobre la propagación de las ondas sísmicas. In Trabajos de Investigación, 3. Talleres del Instituto Geográfico y Cadastral. (in spanish).

  159. 159.

    Ishiyama, Y. (1984). Motions of rigid bodies and criteria for overturning by earthquake excitations. Bulletin of New Zealand Society Earthquake Engineering, 17, 24–37.

  160. 160.

    Jacobs, J. A. (2012). Geomagnetic Micropulsations (1970th ed.). Springer.

  161. 161.

    Jain, S. K., Garcia, L., Gulkan, P., & Hopkins, D. (2004). New IAEE Initiatives for Improvement of Earthquake Engineering Practice Worldwide with particular reference to Develo** Countries.

  162. 162.

    Japanese Meteorological Agency (1996). Explanation table of JMA seismic intensity scale (https:/www.jma.go.jp/jma/kishou/know/shindo/explane.html).

  163. 163.

    Jay, D., Quitoriano, V., Bruce, C., Hopper, M., & James W. (2012). USGS “Did You Feel It?” Internet-based macroseismic intensity maps. Annals of Geophysics, 54(6). https://doi.org/10.4401/ag-5354

  164. 164.

    **, S., **, R., & liu, X. (2019). GNSS Atmospheric Seismology, Theory, Observations and Modelling. Springer.

  165. 165.

    Jones, L. (2018). The Big Ones: How Natural Disasters Have Shaped Us. **uin Random House.

  166. 166.

    Jung, J. H., Yoon, H. S., & Lee, C. Y. (2015). Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. International Journal of Naval Architecture and Ocean Engineering, 7(3), 580–594. https://doi.org/10.1515/ijnaoe-2015-0041

  167. 167.

    Kagermanov, A., Ceresa, P., Morales, E., Poveda, J., & O’Connor, J. (2017). Seismic performance of RC buildings during the MW7.8 Muisne (Ecuador) earthquake on April 2016: field observations and case study. Bulletin of Earthquake Engineering, 15(12), 5167–5189. https://doi.org/10.1007/s10518-017-0182-y

  168. 168.

    Kanai, K. (1957). Semi-empirical formula for the seismic characteristics of ground(structure). Transactions of the Architectural Institute of Japan, 57.1(0), 281–284. https://doi.org/10.3130/aijsaxx.57.1.0_281

  169. 169.

    Kanamori, H. (1977). The Energy Release in Great Earthquake. Journal Geophysical Research, 82, 2981–2987.

  170. 170.

    Kanamori, H., & Boschi, E. (1984). Earthquakes: Observation, Theory and Interpretation. North-Holland.

  171. 171.

    Kanamori, H., & Boschi, E. (Editors) (1983) Proceedings of the International School of Physics “Enrico Fermi”, Course LXXXV: Earthquakes: Observation, Theory and Interpretation. Italian Physical Society.

  172. 172.

    Karanawati, D., Pramumijoyo, S., Anderson, R., & Husein, S. (2006). The Yogyakarta Earthquake of May 27, 2006. Star Pub Co.

  173. 173.

    Kasimzade, A. A., Şafak, E., Ventura, C. E., Naeim, F., & Mukai, Y. (2018). Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering. Springer.

  174. 174.

    Keilis-Barok, V. I. (1972). Computational Seismology. Computational Seismology. USSR Academy of Sciences.

  175. 175.

    Kennett, B. L. N. (1983). Seismic wave propagation in stratified. Cambridge University Press.

  176. 176.

    Khramov, A. N. (1987). Paleomagnetology (V. P. Grudina, Trans.). Springer.

  177. 177.

    Kim, S. G., & Gitterman, Y. (2020). Forensic Explosion Seismology: Technology and Applications. Cambridge Scholars Publishing.

  178. 178.

    Kirikov, B. (1992). History of Earthquake Resistant Construction, Instituto de Ciencias de la Construccion. Eduardo Torroja.

  179. 179.

    Kitaibel, P., & Tomcsányi, A. (1814). Dissertatio de terrae motu Morensi anno 1810.

  180. 180.

    Knopoff, L., Aki, K., & Archaubeau, C. B. (1964). Attenuation of Disperse Waves”. Journal Geophysical Research, 69, 1655–1657.

  181. 181.

    KnowRisk Project. (2016). https://knowriskproject.com/the-project/?lang=pt.

  182. 182.

    Köber, D., Zembisky, Z., & Stefano, M. (2020). Seismic Behaviour and Design of Irregular and Complex Civil Structures III. Springer.

  183. 183.

    Koketsu, K. (2018). Physics of seismic ground motion. Tokyo: Kindai Kagaku.

  184. 184.

    Koketsu, K., & Kikuchi, M. (2000). Propagation of seismic ground motion in the Kanto basin, Japan. Japan. Science, 288, 1237–1239.

  185. 185.

    Kozel, P. (Ed.). (2016). Basic Earthquake Engineering. Scitus Academics.

  186. 186.

    Kramer, S. L. (1996). Geotechnical Earthquake Engineering: Solutions Manual. Prentice Hall.

  187. 187.

    Kramers, H. A. (1927). La diffusion de la lumiere par les atomes. Atti Del Congresso Internazionale Dei Fisici (Como), 2, 545–557. (in italian).

  188. 188.

    Kreyszig, E. (1999). Advanced engineering mathematics: Student solutions manual to 8r.E. John Wiley and Sons (WIE).

  189. 189.

    Kunio, T. (1977). Fundamentals of solid mechanics. Baifukan.

  190. 190.

    Lan, Y. J., Stavridis, A., Kim, I., Diaz-Fanas, G., Heintz, J., Hernández-Bassal, L., Anzola, E., Berkowitz, R., Hussain, S., Jalalian, A., Garini, E., Ktenidou, O.-J., Yousef ianmoghadam, S., Carrion, H., Valles-Mattox, R., Dominguez Maldonado, V., Gama Contreras, A., Almanza Camacho, S. R., Bojórquez Hernández, R. F., … Gilsanz, R. (2020). ATC Mw7.1 Puebla-Morelos earthquake reconnaissance observations: Structural observations and instrumentation. Earthquake Spectra: 36(2_suppl), 31–48. https://doi.org/10.1177/8755293020977520.

  191. 191.

    Landau, L. D., & Lifshits, E. M. (1976). Mechanics (J. B. Sykes, J. S. Bacon, & J. S. Bell, Trans.; 3rd ed.). Butterworth-Heinemann.

  192. 192.

    Landau, L., & Lifchitz, E. (1967). Théorie de l'Elasticité. In Physique Théorique. (in french).

  193. 193.

    Lavan, O., & Stefano, M. (2014). Seismic Behaviour and Design of Irregular and Complex Civil Structures. Springer.

  194. 194.

    Lay, T., & Wallace, T. C. (1995). Modern Global Seismology”. Modern Global Seismology.

  195. 195.

    Lee, W. H. K., Kanamori, H., Jennings, P. C., & Kisslinger, C. (2002). International Handbook of Earthquake & Engineering Seismology—Part A -Part B. Academic Press.

  196. 196.

    Lestuzzi, P., Sellami, S., & Badoux, M. (2008). Génie Parasismique. PPUR Presses Polytechniques.

  197. 197.

    Limongelli, M. P., & Çelebi, M. (2019). Seismic Structural Health Monitoring. Springer.

  198. 198.

    Lin, T.-L., & Wu, Y.-M. (2010). Magnitude determination using strong ground motion attenuation in Earthquake Early Warning. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL042502.

  199. 199.

    Liner, C. F. (2016). Seismic Attributes. In Elements of 3D Seismology (pp. 271–284). Society of Exploration Geophysicists. (2nd Edition) (https://seg.org/Portals/0/SEG/Publications/Books/2016PublicationsCatalog_web.pdf

  200. 200.

    Litehiser, J. (1989). Observatory seismology: an anniversary symposium on the occasion of the centennial of the University of California at Berkeley seismographic stations. University of California Press.

  201. 201.

    Lomnitz, C. (1974). Global Tectonics and Earthquake Risk. Elsevier.

  202. 202.

    Lomnitz, C. (1976). Seismic Risk and Engineering Decisions. Editor: Cinna Lomnitz; eBook ISBN: 9,780,444,601,445.

  203. 203.

    Lomnitz, C. (1996). Fundamentals of Earthquake Prediction Wiley, New York.

  204. 204.

    Love, A. E. H. (2013). A treatise on the mathematical theory of elasticity (4th ed.). Cambridge University Press.

  205. 205.

    Madariaga, R., & Perrier, G. (1991). Les Tremblements de Terre. (in french).

  206. 206.

    Mallet, R. (1846). On the Dynamics of Earthquakes; being an Attempt to reduce their observed Phenomena to the known Laws of Wave Motion in Solids and Fluids. 51–101.

  207. 207.

    Mallet, R. (1847). The Dynamics of Earthquakes. Proceedings of the Royal Irish Academy. Royal Irish Academy. XXI.

  208. 208.

    Mandelbrot, B. (1967). How long is the Coast of Britain? Statistical self-similarity and fractional dimension. Science New Service, 156, 636–638.

  209. 209.

    Margrave, G. F., & Lamoureux, M. P. (2019). Numerical Methods of Exploration Seismology with Algorithms in MATLAB. Cambridge University Press.

  210. 210.

    Matias, L., Carrilho, F., Sá, V., Omira, R., Niehus, M., Corela, C., Barros, J., & Omar, Y. (2021). The contribution of submarine optical fiber telecom cables to the monitoring of earthquakes and tsunamis in the NE Atlantic. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.686296

  211. 211.

    Mazzolani, F., & Piluso, V. (2012). Theory and Design of Seismic Resistant Steal Frames. SPON Press.

  212. 212.

    McGuire, R. K. (2004). Seismic Hazard and Risk Analysis. EERI monography MNO-10.

  213. 213.

    Medvedev, S. V., & Sponheur, V. (1969). Scale of Seismic Intensity”. Proceedings 4th World Conference Earthquake Engineering.

  214. 214.

    Menuera, J. M. (sem data). Datos Básicos para un estudio de sismicidad en el área de la Península Ibérica. (in spanish).

  215. 215.

    Mezcua, J. (1991). Seismicity, Seismotectonics, and Seismic Risk of the Ibero-Maghrebian Region. Instituto Geográfico Nacional.

  216. 216.

    Mezcua, J., & Martinez-Solares, J. (1983). Sismicidad del Área Ibero-Mogrebi. Madrid: Instituto Geográfico Nacional.

  217. 217.

    Milne, J. (1862). Great Napolitan Earthquake of 1857. Chapman and Hall.

  218. 218.

    Milne, J. (1881). Experiments in observational seismology. Transactions of the Seismological Society of Japan, 3(1), 12–64.

  219. 219.

    Milne, J. (1886). Earthquakes and other Earth Movements. Kegan Paul Trench & Co.

  220. 220.

    Miranda, E., Kazantzi, A. K., & Vamvatsikos, E. (2018). New Approach to the Design of Acceleration-Sensitive Non-Structural Elements in Buildings, Proceedings, 16th European Conference Earthquake Engineering, paper#10,805.

  221. 221.

    Miranda, R. (1931). Sismicidade de Setúbal. Revista Terra. (in portuguese).

  222. 222.

    Mircevska, V., El Ezz, A., Gjeorgievska, I., Smirnoff, A., & Nastev, M. (2019). First-order seismic loss assessment at urban scale: A case study of Skopje, North-Macedonia. Journal of Earthquake Engineering.

  223. 223.

    Moehle, J. (2014). Seismic design of reinforced concrete buildings. McGraw-Hill Education.

  224. 224.

    Moldovan, I.-A., Constantin, A. P., Partheniu, R., Grecu, B., & Ionescu, C. (2021). Relationships between macroseismic intensity and peak ground acceleration and velocity for the Vrancea (Romania) subcrustal earthquakes. Annals of Geophysics, 64(4), SE432. https://doi.org/10.4401/ag-8448

  225. 225.

    Montessus De Ballore, F. (1906). Les Tremblements de Terre. La Geography Séismologique. La Geography Séismologique. Librairie Armand Colin.

  226. 226.

    Moriguchi, S., Udagawa, K., & Hitotsumatsu, S. (1956). Mathematical formulae I. Iwanami Shoten.

  227. 227.

    Moustafa, A. (2015). Earthquake Engineering: From Engineering Seismology to Optimal Seismic Design of Engineering Structures. Intech.

  228. 228.

    MSK‐64 intensity scale (1981). Report on the Ad hoc Panel meeting of experts on updating of the MSK‐64 intensity scale, 10–14 March 1980. Gerlands Beitr. Geophys., Ergänzungsband, 90, 261–268.

  229. 229.

    Musgrave, A. W. (1967). Seismic Refraction Prospecting. Society of Exploration Geophysicists.

  230. 230.

    Musson, R. M. W., Grünthal, G., & Stucchi, M. (2009). The Comparison of Macroseismic Intensity Scales. (http://hal.archives-ouvertes.france).

  231. 231.

    Naeim, F. (1989). The Seismic Design Handbook. Chapman & Hall.

  232. 232.

    Nakata, N., Gualtieri, L., & Fichtner, A. (2019). Seismic Ambient Noise. Cambridge University Press.

  233. 233.

    Navarro-Newmann, M. M. S. (1916). Terremotos: Sismógrafos y Edifícios. Impresa de Gabriel López del horno.

  234. 234.

    NBC News (2019). The Luzon-Manila earthquake and the water cascade (https://www.nbcnews.com/news/world/earthquake-hits-philippines-thousands-flee-area-near-manila-n996941.

  235. 235.

    New Manual of Seismological Observatory Practice (2002). Revised version, electronically published 2009. (https://moodle2.units.it/pluginfile.php/294221/mod_resource/content/1/manual_seismological_observatory-2002.pdf)

  236. 236.

    Niglio, O. (2004). La Casa Baraccata: Prototipo di Architettura Antisismica in Epoca Borbonica. Bioarchitettura. 69. Weger. (in italian).

  237. 237.

    Nipho, F. M. (1755). Explicación physica y moral de las causas, deñales, diferencias y efectos de los terremotos, con una relación muy exacta de los más formidables y ruinosos que ha padecido la tierra desde el principio del Mundo, hasta el que se ha experimentado en España y Portugal el día primero de Noviembre de este año 1755. Biblioteca Nacional. (in spanish).

  238. 238.

    Nishida, A. (2013). Geomagnetic Diagnosis of the Magnetosphere. Springer.

  239. 239.

    Nolet, G. (2012). Seismic Tomography with Applications in Global Seismology and Exploration Geophysics. Reidel Publishing Company.

  240. 240.

    Nott, J. (2006). Extreme Events: a Physical reconstruction and Risk Assessment. Cambridge University Press.

  241. 241.

    Nuttli, O. W. (1973). Seismic Wave Attenuation and Magnitude Relations for Eastern North America”. Journal of Geophysical Research, 78, 876–885.

  242. 242.

    Oliveira, C. S. (1986). Some quantitative measurements for calibrating historical seismicity. Em Proceedings 8th European Conference on Earthquake Engineering. Lisbon.

  243. 243.

    Oliveira, C. S. (Editor) (1990). Prediction of Earthquakes: Occurrence and Ground Motion.

  244. 244.

    Oliveira, C. S., Lemos, J. V., & Sincraen, G. (2002). Modelling Large Displacements of Structures Damaged by Earthquake Motions. European Earthquake Engineering, 3, 56–71.

  245. 245.

    Oliveira, C. S., Roca, A., & Goula, X. (Editors) (2008). Assessing and Managing Earthquake Risk. Springer.

  246. 246.

    Oliver, J. (1996). Shocks and Rocks: Seismology in the Plate Tectonics Revolution. Wiley.

  247. 247.

    Olsen, P. (2009). Core Dynamics. Treatise on Geophysics. Elsevier.

  248. 248.

    Olsen, S. (2016). Eruption: The untold story of Mount St. Helens. W.W. Norton & Company.

  249. 249.

    Omori, F. (1900a). Intensity scale. Earthquake Investigation Committee. Publications in Foreign Languages, 4, 137–141.

  250. 250.

    Omori, F. (1900b). Seismic experiments on the fracturing and overturning of columns. Publications of the Earthquake Investigation Committee in Foreign Languages, 4, 69–141.

  251. 251.

    Omori, F. (1902). On the overturning and sliding of columns. Publications of the Earthquake Investigation Committee in Foreign Languages, 12, 8–27.

  252. 252.

    Omori, F. (1984). On the aftershocks of earthquakes. Journal College. Science Imperial University, 7, 111–200.

  253. 253.

    Papadopoulos, G. (Ed.). (2003). Tsunami Hazard in the Eastern Mediterranean: Strong earthquakes and Tsunamis in the Corinth Gulf, Central Greece. Natural Hazards, 29, 437–464.

  254. 254.

    Papadrakakis, M., Champis, D. C., Lagaros, N. D., & Tsompanakis, Y. (2008). Computational Structural Dynamics and Earthquake Engineering. CRC Press.

  255. 255.

    Papadrakakis, M., Fragiadakis, M., & Plevris, V. (2013). Computational Methods in Earthquake Engineering. Springer.

  256. 256.

    Papale, P. (2014). Volcanic Hazards, Risks and Disasters. Elsevier.

  257. 257.

    Papazachos, V., & Papazachos, C. (1997). The Earthquake of Greece. Editions Ziti.

  258. 258.

    Papoulis, A. (1962). The Fourier Integral an Its Applications”. McGraw-Hill Book Company, Inc. New York.

  259. 259.

    Parajuli, R. R., Kiyono, J., & Okumura, Y. (2016). Toppled Vehicles During Kumamoto Earthquake: Response Analysis & PGA Estimation. Em Near Fault Zone. 35th Annual Meeting. Japan Society for Natural Disaster Science.

  260. 260.

    Pauley, T., & Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley and Sons.

  261. 261.

    Pavel, F., Popa, V., & Vacareanu, R. (2018). Impact of long-period ground motions on structural design: A case study for Bucharest, Romania (1.a ed.). Springer International Publishing.

  262. 262.

    Paz, M. (1994). In International Handbook of Earthquake Engineering Codes, Programs, and Examples. Chapman & Hall.

  263. 263.

    Pedlosy, J. (2013). Geophysical Fluid Dynamics. Springer.

  264. 264.

    Pérez-Gavilán, J. J. (2006). Earthquake Engineering. Challenges and Trends: Honoring Luis Esteva. Instituto de Ingenieria UNAM.

  265. 265.

    Perrey, A. (1847). Sur les tremblements de terre de la Péninsule Ibérique. Em Annales des Sciences Physiques et Naturelles, d’Agriculture et d’Industrie, 461–513.

  266. 266.

    Physics Dictionary Editorial Committee (Editor). (1992). Physics dictionary (rev ed., p. 2465). Tokyo: Baifukan.

  267. 267.

    Pice., G. D. (2010). Mineral Physics. Treatise on Geophysics. Elsevier.

  268. 268.

    Pilante, W. L. (2012). Elastic Waves in the Earth. Elsevier.

  269. 269.

    Pilkorsky, A., Rosenblum, M. G., & Kurths, J. (2001). Synchronization: Universal Concept in Nonlinear Science. Cambridge. University Press.

  270. 270.

    Pinto, P. E., Giannini, R., & Franchin, P. (2004). Seismic Reliability Analysis of Structures. IUSS Press.

  271. 271.

    Pissarenko, G. S., Iakovlev, A. P., & Matveiev, V. V. (1975). Formulae of Strength of Materials. MIR.

  272. 272.

    Pitilakis, K. (2018). Recent Advances in Earthquake Engineering in Europe. Proceedings 16th European Conference on Earthquake Engineering, Thessaloniki. Springer, Geotechnical, Geological and Earthquake Engineering Series, 46. https://doi.org/10.1007/978-3-319-75741-4

  273. 273.

    Plevris, V., Kremmyda, G., & Fahjan, Y. (2017). Performance-Based Seismic Design of Concrete Structures and Infrastructures. IGI Global.

  274. 274.

    Poland, C.D., Hill, J., Sharpe, R.L., Soulages, J. et al. (1995). Performance based seismic engineering of buildings. Structural Engineers Association of California.

  275. 275.

    Porush, A. R., & Zacher, E. G. (1987). SEAOC, the Blue Book and seismic codes: past, present, and future, Proceedings: 56 th Annual Convention, Structural Engineers Association of California.

  276. 276.

    Prasad, B. B. (1996). Fundamentals of Soil Dynamics and Earthquake Engineering. PHI Learning.

  277. 277.

    Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1995). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.

  278. 278.

    Priestley, M. B. (1967). Power Spectral analysis of non-stationary random Processes. Journal of Sound and Vibrations, 6(1), 86–97.

  279. 279.

    Priestley, M. J. N. (1997). Displacement-based Seismic Assessment of Reinforced Concrete Buildings. Journal Earthquake Engineering, 1(1), 157–192.

  280. 280.

    Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement Based Seismic Design of Structures. IUSS Press.

  281. 281.

    Professor, B. (2017). Why do Tectonic Plates Crash and Slip? Seismology book for kids. Speedy Publishing LLC.

  282. 282.

    Pujol, J. (2009). Elastic wave propagation and generation in seismology. Cambridge University Press. https://doi.org/10.1017/cbo9780511610127.

  283. 283.

    QCN-The Quake-Catcher Network. (n.d.). Quakecatcher. Quakecatcher.Net. Retrieved January 15, 2021, from https://quakecatcher.net/,

  284. 284.

    Rajasekaran, S. (2009). Structural Dynamics of Earthquake Engineering: Theory and Application using MATHEMATICA and MATLAB. CRC Press.

  285. 285.

    Ramírez, J. E. (1969). Historia de los terremotos en Colombia. Instituto Geográfico Agustín Codazzi. Oficina de Estudios Geograficos. (in spanish).

  286. 286.

    Rayleigh, Lord. (1885). On waves propagated along the plane surface of an elastic solid.

  287. 287.

    Reicherter, K. (2014). Progress in active bedrock normal fault investigations throughout the Mediterranean. Invited Lecture, Proceeding of the 5th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, Busa Korea.

  288. 288.

    Reid, H. F. (1918). The Starting Points of Earthquake Vibrations. Bulletin of the Seismological Society of America, 8, 79–82.

  289. 289.

    Reiter, L. (1990). Earthquake Hazard Analysis. Columbia University Press.

  290. 290.

    Revilla, B. (1976). Guatemala: El Terremoto de Los Pobres. In Sedmay Ediciones: Distribuidora Maydi.

  291. 291.

    Ribaric, V. (1981). Seizmicnost Slovenije: Sismicidad de Eslovenia. Seismological survey of the SR of Slovenia.

  292. 292.

    Richter, C. F. (1935). An Instrumental Earthquake Magnitude Scale. Bulletin of the Seismological Society of America, 25, 1–32.

  293. 293.

    Richter, C. F. (1958). Elementary Seismology. W.H. Freeman.

  294. 294.

    Rihal, S. S. (1994). Correlation between recording building data and non-structural damage during the 1989 Loma Prieta earthquake, Data Utilization Report CSMIP/94–04, Office of Strong Motion Studies. California Division of Mines and Geology, 65.

  295. 295.

    Rikitake, T. (1983). Earthquake forecasting and warning. Springer.

  296. 296.

    Riznichenko, I. V. (1992). Problems of seismology: Selected papers. Springer.

  297. 297.

    Robert W., Heaton, T., Chandy, M., Krause, A., Kohler, M., Bunn, J., Guy, R., Olson, M., Faulkner, M., Cheng, M., Strand, L., Chandy, R., Obenshain, D., Liu, A., & Aivazis, M. (2012). Community seismic network. Annals of Geophysics, 54(6). https://doi.org/10.4401/ag-5269. (accessed 2021/01/15).

  298. 298.

    Rocher, J. L. (1756). Relacion y observaciones physicas, mathematicas, y morales sobre el general terremoto, y la irrupcion del mar del dia primero de Noviembre de este año de 1755, que comprehendio a la Ciudad, y Gran Puerto de Sta. Maria, y a toda la costa, y tierra firme del Reyno de Andalucía, Imprenta de la Casa Real de las Cadenas. (in spanish).

  299. 299.

    Rodríguez de la Torre, F. (1984). Los terremotos alicantinos de 1829. Inst. de Estudios Alicantinos.

  300. 300.

    Romanowicz, B., & Dziewonski, A. (Eds.). (2014). Seismology and structure of the earth: Treatise on Geophysics. Elsevier.

  301. 301.

    Rossi, L., Holtschoppen, B., & Butenweg, C. (2019). Official Data on the Economic Consequences of the 2012 Emilia-Romagna Earthquake. A First Analysis of Database SFINGE. Bulletin of Earthquake Engineering, 17, 4855–4884.

  302. 302.

    Rudolph, E., & Tams, E. (1906). Seismogramme des nordpazifischen und sudamerikanischen Erdbebens am 16. (in german).

  303. 303.

    Rupakhety, Rajesh, Olafsson, S., & Bessason, B. (Eds.). (2018). Numerical and Experimental study of household furniture rocking against walls: Shaketable tests in KnowRISK Proceedings of the international conference on earthquake engineering and structural dynamics (1st ed.). Springer International Publishing.

  304. 304.

    Sadek, S., Dabaghi, M., Elhajj, I., Zimmaro, P., Hashash, Y.M.A., Yun, S.H., O’Donnell, T.M., Stewart, J.P. (2021). Engineering impacts of the august 4, 2020 port of Beirut, Lebanon explosion. GEER Association (Report—70). https://doi.org/10.18118/G6C96C

  305. 305.

    Saffir-Simpson hurricane wind scale. (2020). NOAA.Gov. Retrieved January 12, 2022, from https://www.nhc.noaa.gov/aboutsshws.php

  306. 306.

    Saito, M. (2016). The theory of seismic wave propagation. Tokyo: Terrapub.

  307. 307.

    Sakr, M. A., & Ansal, A. (2012). Special Topics in Earthquake Geotechnical Engineering. Springer.

  308. 308.

    Samui, P. (2010). Artificial Intelligence in Earthquake Engineering. LAP Lambert. Academic Publishing.

  309. 309.

    Sarria, A. (2005). 3. El sismo de Popayán de 1983. Desastres, 29. (in spanish).

  310. 310.

    Sato, Y. (1978). Elastic wave theory. Tokyo: Iwanami Shoten.

  311. 311.

    Schebraum, F. (2013). Of Poles and Zeros: Fundamentals of Digital Seismology. Springer.

  312. 312.

    Scheidegger, A. E. (1975). Physical aspects of natural catastrophes. Elsevier Science.

  313. 313.

    Schnabel, P. B., Lysmer, J., & Seed, H. B. (1972). Shake: a Computer Program for Earthquake Response Analysis of Horizontal Layered Sites. Report No. UCB/ EERC-72/12, Earthquake Engineering Research Center, University of California, Berkeley, December, 102 p.

  314. 314.

    Scholz, C. H. (2019). The mechanics of earthquakes and faulting (3rd ed.). Cambridge University Press.

  315. 315.

    SEAOC. (1960). Recommended Lateral Force Requirements and Commentary, Structural Engineers Association of California, Sacramento, CA, U.S.A.

  316. 316.

    SEAOC. (1995). Structural Engineers Association of California (SEAOC). Vision 2000, conceptual framework for performance-based seismic design. Recommended Lateral Force Requirements and Commentary, 1996, 6th Edition. Sacramento, CA: 391–416.

  317. 317.

    SEAOC Blue Book Seismic Design Recommendations_(2019) (https://www.academia.edu/42951186/SEAOC_Blue_Book_Seismic_Design_Recommendations_2019_Seismology_Committee_Structural_Engineers_Association_of_California)

  318. 318.

    Seismology (1999). Recommended Lateral Force Requirements and Commentary, Seventh Edition, Seismology Committee, Structural Engineers Association of California, September.

  319. 319.

    Seismice, S. I., Inginerie Seismica De, I., Cornea, M., Oncescu, G., & Marmureanu, F. (1987). Introducere in Mecanica Fenomenelor Seismice.

  320. 320.

    Sharma, M. L., & Wilson, H. R. (2018). Advances in Indian Earthquake Engineering and Seismology. Springer.

  321. 321.

    Shaw, R. (2020). Thirty years of Science Technology and Academia in Disaster Risk Reduction and Emergency Responsibilities. International Journal of Disaster Science. Microsoft Downloads.

  322. 322.

    Shearer, P. M. (1999). Introduction to Seismology. Cambridge University Press.

  323. 323.

    Shebalin, N.V. (1973) Macroseismic data as information on source parameters of large earthquakes. Physics Earth Planetarium International. 6, 316–323.

  324. 324.

    Sheriff, R. E., & Geldart, L. P. (1995). Exploration Seismology. Cambridge University Press.

  325. 325.

    Sieberg, A. (1923). Erdbebenkunde. Gustav Fisher, Jena. (in german).

  326. 326.

    Sieberg, A. (1930). Geologie der Erdbeben. Geology of Earthquakes), 2, 552–555. (in german).

  327. 327.

    Sieberg, A. (1932). Erdbebengeographie, Verlag von Gebruder. (in german).

  328. 328.

    Sitharam, T. G., Jakka, R., & Kolathayar, S. (2021). Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics. In Springer Transactions in Civil and Environmental Engineering: Vol. ISBN (pp. 978–981). Springer.

  329. 329.

    Skinner, R., Robinson, W. H., & McVerry, G. H. (1993). An Introduction to Seismic Isolation. John Wiley & Sons.

  330. 330.

    Slawinski, M. A. (2020). Waves and rays in elastic continua (fourth edition). World Scientific Publishing.

  331. 331.

    Solnes, J. (1974). Engineering Seismology and Earthquake Engineering (J. Solnes, Ed.). Kluwer Academic.

  332. 332.

    Soloviev, V. (1978). Tsunamis. In The Assessment and Mitigation of Earthquake Risk. UNESCO Press.

  333. 333.

    Sornette, D. (2014). Critical phenomena in natural sciences. Springer.

  334. 334.

    Spence, R. (2021).What happens in an earthquake? In Why Do Buildings Collapse in Earthquakes? (pp. 75–96). Wiley. https://doi.org/10.1002/9781119619475.ch4

  335. 335.

    Spence, R., & Coburn, A. (2002). Earthquake Protection (2nd ed.). Wiley-Blackwell.

  336. 336.

    Spence, R., Emily So, & Scawthorn, C. (Eds.). (2010). Human casualties in earthquakes: Progress in modelling and mitigation. Springer.

  337. 337.

    Spence, R., Lopes, M., Bisch, P., Plumier, A., & Dolce, M. (2007). Earthquake Risk reduction in the European Union. European Association on Earthquake Engineering.

  338. 338.

    Steikhardt, L. (1931). Die Erdbebentagtigkeit am Westrand des Mittelmeers und ihre Geologische Bedeutung. (in german).

  339. 339.

    Stein, S., & Wyss, M. (2013). An introduction to seismology, earthquakes, and earth structure (1st ed.). Wiley-Blackwell.

  340. 340.

    Strand, D. R. (1984). Code development between 1927 and 1980, Proceedings: 1984 Convention, Structural Engineers Association of California.

  341. 341.

    Stupazzini, M., de la Puente, J., Smerzini, C., Käser, M., Igel, H., & Castellani, A. (2009). Study of rotational ground motion in the near-field region. Bulletin of the Seismological Society of America99(2B), 1271–1286.

  342. 342.

    Sukurai, M., & Shaw, R. (Editors) (2021). Emerging Technologies for Disaster Resilience: Practical cases and Theory. Disaster Risk Reduction Series, Springer. https://doi.org/10.1007/978-981-16-0360-0.

  343. 343.

    Suyehiro, K. A. (1926b). Seismic vibration analyzer and the records obtained therewith. Bulletin of Earthquake Research Institute, Tokyo University, 1, 59–64.

  344. 344.

    Syngellakis, S. (2014). Earthquake-Soil Interaction. WIT Press.

  345. 345.

    Takeuchi, H., & Saito, M. (1972). Seismic surface waves. Seismology: Surface waves and earth oscillations. Academic Press.

  346. 346.

    Tape, C., Ringler, A. T., & Hampton, D. L. (2020). Recording the Aurora at Seismometers across Alaska, Seismol. Res. Lett. XX, 1–15, https://doi.org/10.1785/0220200161.

  347. 347.

    Teisseyre, R., & Bielski, W. (1986). Continuum Theories in Solid Earth Physics (Vol. 3). Elsevier.

  348. 348.

    Terasawa, K. (1954). An introduction to mathematics for natural scientists. Iwanami Shoten.

  349. 349.

    Terzaghi, K. (1943). Theoretical soil mechanics. John Wiley & Sons.

  350. 350.

    The Editors of Encyclopedia Britannica. (2021). Harry Fielding Reid. In Encyclopedia Britannica.

  351. 351.

    Theoretical and applied seismology. (1938). Nature, 142(3595), 552–553. https://doi.org/10.1038/142552a0.

  352. 352.

    Théorie des corps déformables. (1909). Nature, 81(2072), 67–67. https://doi.org/10.1038/081067a0.(in French).

  353. 353.

    Tiedemann, H. (1992). Earthquakes and Volcanic Eruptions: A Handbook on Risk Assessment. Swiss Re Editor. Zurich.

  354. 354.

    Timoshenko, S., & Young, D. H. (2012). Advanced Dynamics. Literary Licensing.

  355. 355.

    Tsallis, C. (1988). Possible Generalization of Botzmann – Gibbs Stats. Journal of Statistical Physics, 52. 479–487.

  356. 356.

    Tsallis, C. (2009). Introduction to nonextensive Statistical Mechanics: Approaching a Complex World. Springer Velag, Berlin.

  357. 357.

    Turcotte, D. (1997). Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge.

  358. 358.

    Turcotte, D., Schertbakov, F., & Buforn, E. (2017) Principles of Seismology. Cambridge University Press

  359. 359.

    Udías, A., & Buforn, E. (1991). Source Mechanism and Seismotectonics. Birkhäuser.

  360. 360.

    Udias, A., Pro, C. & Buforn, E. (2012). Solved Problems in Geophysics. Cambridge University Press.

  361. 361.

    UNAVCO Basin resonance in Kathmandu due to the Gorkha, Nepal Earthquake – YouTube uploads/2018/06/Portfolio-of-solutions_30March2018.pdf)

  362. 362.

    US Department of Commerce, Satellite, N., Information Service, & National Centers for Environmental Information. (2012). NOAA National centers for Environmental Information (NCEI). https://www.ngdc.noaa.gov/

  363. 363.

    Utsu, T. (2001). Seismology (3rd ed.). Tokyo: Kyoritsu Shuppan.

  364. 364.

    Valencius, C.B. (2013). The lost History of New Madrid Earthquakes. University of Chicago Press.

  365. 365.

    Valles, C., Marin Ferrer, A., & Poljanšek, M. (2020). Executive summary of the report Science for Disaster Risk Management 2020: acting today, protecting tomorrow. EUR 30,183 EN, Publications Office of the European Union (I. Clark, Ed.).

  366. 366.

    Valliaruilas, F. & Teleaca, L. (2011). Application nlstati szl DA physics In earth sciences and naru oil hazards. Acta. Geophysics EC, 20E2.

  367. 367.

    Vanmarke, E.H. (1983). Random Fields: Analysis and Synthesis. The M.I.T. Press, ISBN 0–262-22,026–1.

  368. 368.

    Veletsos, A.S. (1974). Seismic Effects in Flexible Liquid Storage Tanks, Proceedings of the Fifth World Conference for Earthquake Engineering, Rome, 630–639.

  369. 369.

    Vere-Jones, D.A. (1966). A Markov Model for Aftershock Occurrences. Pure and Applied Geophysics, 64, 31–42.…1), 45

  370. 370.

    Villaverde, R. (2209). Fundamental Concepts of Earthquake Engineering. CRC Press.

  371. 371.

    Vogt, J., Musson, R. M. W., & Stucchi, M. (1994). Seismogeological and hydrological criteria for the New European Macroseismic Scale (MSK-92). Natural Hazards (Dordrecht, Netherlands), 10(1–2), 1–6. https://doi.org/10.1007/bf00643437.

  372. 372.

    Wald, D. J., Quitoriano, V., Dengler, L. A., & Dewey, J. W. (1999). Utilization of the internet for rapid community intensity maps. Seismological Research Letters, 70(6), 680–697. https://doi.org/10.1785/gssrl.70.6.680.

  373. 373.

    Wang. J. (2009). Historical earthquake investigation and research in China. Annals of Geophysics, 47(2–3). https://doi.org/10.4401/ag-3337.

  374. 374.

    Webster, A. (2016). Partial differential equations of mathematical physics: Second edition (2nd ed.). Dover Publications.

  375. 375.

    Wegener, A. (1924). The origins of Continents and Oceans. London, Methuen & Co.

  376. 376.

    Wencai, Y. (2014). Reflection seismology: Theory, data processing and interpretation. Elsevier Science Publishing.

  377. 377.

    Wench, Y. (2013). Reflection Seismology: Theory Data Processing and interpretation. Elsevier.

  378. 378.

    Weyl, H. (1919). Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter. Annalen Der Physik, 365(21), 481–500. https://doi.org/10.1002/andp.19193652104. (in german).

  379. 379.

    Whitman, R.V. (1973). Damage Probability Matrices for Prototype Buildings. Structures publication 380. MIT, Boston.

  380. 380.

    Wiegel R. L., Editor (1980) Advances in Earthquake Engineering, Continuing Education Earthquake Engineering, University Extension of the College of Engineering, University of California, Berkeley.

  381. 381.

    Wiegel, R. L. (1970). Earthquake Engineering (Robert L. Wiegel, Ed.). DA Information Services.

  382. 382.

    Wielandt, E., & Steim, J. M. (1986). A digital very broad band seismographe. Annales Geophysicae, 4(B), 3, 227–232.

  383. 383.

    Winchester, S. (2003). Krakatoa: The day the world exploded (om): The day the world exploded. Penguin Books.

  384. 384.

    WIT Transactions on The Built Environment. Volume 172, 2017 ERES 2017 (REVISTA).

  385. 385.

    Wolfram, S. (2019). History of Math (https://www.wolfram.com/events/technology-conference/2019/)

  386. 386.

    Wong, L., & Basu, A. (Eds.). (n.d.). Bulletin of Engineering Geology and the Environment. Springer.

  387. 387.

    Wood, H. O., & Neumann, F. (1931). Modified Mercalli intensity scale of 1931. Bulletin of the Seismological Society of America, 21(4), 277–283. https://doi.org/10.1785/bssa0210040277

  388. 388.

    Yilmaz, O. (2015). Engineering seismology with applications to geotechnical engineering. Society of Exploration Geophysicists.

  389. 389.

    Yoan, N. (Ed.). (2011). Japan Meteorological Agency. Miss Press.

  390. 390.

    Yoshida, N. (2016). Seismic ground response analysis. Springer.

  391. 391.

    Zembaty, Z., & De Stefano, M. (Eds.). (2016). Seismic behaviour and design of irregular and complex civil structures II. Springer International Publishing.

  392. 392.

    Zerva, A. (2016). Spatial variation of seismic ground motions: Modeling and engineering applications. CRC Press. https://doi.org/10.1201/9781420009910.

  393. 393.

    Zienkiewicz, O. C., Chan, A. H. C., Pastor, M., & Schrefler, B. A. (1999). Computational geomechanics with special reference to earthquake engineering. John Wiley & Sons.

  394. 394.

    Zuccolo E., Cremen, G. & Galasso, C. (2021) Comparing the Performance of Regional Earthquake Early Warning Algorithms in Europe. Front. Earth Sci. 9:686272.https://doi.org/10.3389/feart.2021.686272.

Appendix 2

See Fig. 88.

Fig. 88
figure 88

Flow-Chart with the evolution of Science and Technology along the millenniums

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.S. The main developments of Seismology and Earthquake Engineering since the early 1700s and the new challenges for a sustainable society. Bull Earthquake Eng 20, 4697–4863 (2022). https://doi.org/10.1007/s10518-022-01440-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-022-01440-w

Keywords

Navigation