Log in

Simulation of strong ground motion for a MW 8.5 hypothetical earthquake in central seismic gap region, Himalaya

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

In this study, hybrid simulation technique is used to simulate acceleration time histories for a hypothetical great earthquake of magnitude Mw 8.5 in central seismic gap (CSG) region of Himalaya. In this technique the low frequency ground motions simulated by Spectral Finite Element Method (SPECFEM) are combined with high frequency ground motions obtained by Empirical Green’s Function (EGF) technique. First, this method is validated effectively by simulating acceleration time histories over all frequency range for the 2015 Mw 7.86 Nepal earthquake. Since 2005, a total of 21 small events whose magnitudes vary from 3.5 to 5.7 have occurred in CSG region. The recorded data of these events are used as Green’s function in EGF technique. Slip distribution over fault plane is considered as a random field for simulating the ground motions. Ensembles of acceleration time histories are simulated at 32 stations in the epicentral region. The maximum horizontal PGA of 0.89g is observed at station Garsain. The mean PGA value exceeded 0.8g at five stations. The estimated acceleration time histories can be used to estimate the safety of the existing structures and design values for the construction of important structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Archuleta RJ, Liu P, Steidl JH, Bonilla LF, Lavallée D, Heuze F (2003) Finite-fault site-specific acceleration time histories that include nonlinear soil response. Phys Earth Planet Inter 137(1):153–181

    Article  Google Scholar 

  • Bilham R, Gaur VK (2000) Geodetic contributions to the study of seismotectonics in India. Curr Sci 79:1259–1269

    Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan seismic hazard. Science 293:1442–1444

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75(26):4997–5009

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Chopra S, Kumar V, Suthar A, Kumar P (2012) Modeling of strong ground motions for 1991 Uttarkashi, 1999 Chamoli earthquakes, and a hypothetical great earthquake in Garhwal–Kumaun Himalaya. Nat Hazards 64:1141–1159

    Article  Google Scholar 

  • Dhanya J, Maheshreddy G, Raghukanth STG (2016) Ground motion estimation during 25th April 2015 Nepal earthquake. Acta Geod Geophys. doi:10.1007/s40328-016-0170-8

    Google Scholar 

  • Frankel A (1995) Simulating strong motion of large earthquakes using recordings of small earthquakes: the Loma Prieta mainshock as test case. Bull Seismol Soc Am 85:1144–1160

    Google Scholar 

  • Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123

    Article  Google Scholar 

  • Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophys Res Lett 5:1–4

    Article  Google Scholar 

  • Hartzell S, Harmsen S, Frankel A, Larsen S (1999) Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull Seismol Soc Am 89:1484–1504

    Google Scholar 

  • IBC (2009) International Building Code. International Code Council

  • IS 1893–2002 (2002) Criteria for earthquake resistant design of structures: part 1 -general provisions and buildings. Bureau of Indian Standards, BIS, New Delhi

    Google Scholar 

  • Kamae K, Irikura K, Pitarka A (1998) A technique for simulating strong ground motion using hybrid Green’s function. Bull Seismol Soc Am 88(2):357–367

    Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095

    Google Scholar 

  • Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalayan plate boundary. Tectonophysics 38:78–92

    Google Scholar 

  • Khattri KN (1999) Probabilities of occurrence of great earthquakes in the Himalaya. Curr Sci 77:967–972

    Google Scholar 

  • Khattri KN, Tyagi AK (1983) Seismicity patterns in the Himalayan plate boundary and the identification of areas of high seismic potential. Tectonophysics 96:19–29

    Article  Google Scholar 

  • Komatitsch D, Tromp J (1999) Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys J Int 139(3):806–822

    Article  Google Scholar 

  • Komatitsch D, Tromp J (2002a) Spectral-element simulations of global seismic wave propagation–I. Validation. Geophys J Int 149:390–412

    Article  Google Scholar 

  • Komatitsch D, Tromp J (2002b) Spectral-element simulations of global seismic wave propagation–II. 3-D models, oceans, rotation, and self-gravitation. Geophys J Int 150:303–318

    Article  Google Scholar 

  • Kumar D, Khattri KN, Teotia SS, Rai SS (1999) Modelling of accelerograms of two Himalayan earthquakes using a novel semi-empirical method and estimation of accelerogram for a hypothetical great earthquake in the Himalaya. Curr Sci 76:819–830

    Google Scholar 

  • Mai PM, Beroza GC (2002) A spatial random field model to characterize complexity in earthquake slip. J Geophys Res 107:2308–2329

    Article  Google Scholar 

  • Mittal H, Kumar A, Ramhmachhuani R (2012) Indian national strong motion instrumentation network and site characterization of its stations. Int J Geosci 3(06):1151–1167

    Article  Google Scholar 

  • Muthuganesian P, Raghukanth STG (2016a) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part I. Site-specific ground motion relations. Acta Geophys 64(2):336–361

    Google Scholar 

  • Muthuganesian P, Raghukanth STG (2016b) Site-specific probabilistic seismic hazard map of Himachal Pradesh, India. Part II. Hazard estimation. Acta Geophys 64(4):853–884

    Google Scholar 

  • Parvez IA, Romanelli F, Panza GF (2011) Long period ground motion at bedrock level in Delhi City from Himalayan earthquake scenarios. Pure Appl Geophys 168:409–477

    Article  Google Scholar 

  • Pitarka A, Somerville P, Fukushima Y, Uetake T, Irikura K (2000) Simulation of near-fault strong-ground motion using hybrid Green’s functions. Bull Seismol Soc Am 90:566–586

    Article  Google Scholar 

  • Raghukanth STG (2008) Simulation of strong ground motion during the 1950 Great Assam earthquake. Pure Appl Geophys 165(9–10):1761–1787

    Article  Google Scholar 

  • Raghukanth STG, Kavitha B (2014) Ground motion relations for active regions in India. Pure Appl Geophys 171:2241–2275

    Article  Google Scholar 

  • Raghukanth STG, Kumari KL, Somala SN (2012) Regional level ground motion simulation for a hypothetical great earthquake in the Garwhal Himalaya. Geomat Nat Hazards Risk 4(3):202–225

    Article  Google Scholar 

  • Shahjouei A, Pezeshk S (2015) Synthetic seismograms using a hybrid broadband ground-motion simulation approach: application to Central and Eastern United States. Bull Seismol Soc Am 105(2A):686–705

    Article  Google Scholar 

  • Sharma B, Chopra S, Suthar AK, Bansal BK (2013) Estimation of strong ground motion from a great earthquake Mw 8.5 in central seismic gap region, Himalaya (India) using empirical Green’s function technique. Pure appl Geophys 170:2127–2138

    Article  Google Scholar 

  • Shinozuka M, Deodatis G (1996) Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl Mech Rev ASME 49:29–53

    Article  Google Scholar 

  • Singh SK, Mohanty WK, Bansal BK, Roonwal GS (2002) Ground motion in Delhi from future large/great earthquakes in the central seismic gap of the Himalayan arc. Bull Seismol Soc Am 92(2):555–569

    Article  Google Scholar 

  • Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol Res Lett 70(1):59–80

    Article  Google Scholar 

  • Valdiya KS (2014) Damming rivers in the tectonically resurgent Uttarakhand Himalaya. Curr Sci 106:1658–1668

    Google Scholar 

  • Wyss M (2006) The Kashmir M7.6 shock of 8 October 2005 calibrates estimates of losses in future Himalayan earthquakes. In: Proceedings of the 3rd international ISCRAM conference, 14–17 May 2006, Newark, NJ

  • Yu G, Khattri KN, Anderson JG, Brune JN, Zeng Y (1995) Strong ground motion from the Uttarkashi, Himalaya, India, earthquake: comparison of observations with synthetics using the composite source model. Bull Seismol Soc Am 85:31–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheshreddy Gade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gade, M., Raghukanth, S.T.G. Simulation of strong ground motion for a MW 8.5 hypothetical earthquake in central seismic gap region, Himalaya. Bull Earthquake Eng 15, 4039–4065 (2017). https://doi.org/10.1007/s10518-017-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0146-2

Keywords

Navigation