Log in

Mathematical and Experimental Model of Oxygen Diffusion for HepaRG Cell Spheroids

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

3D cell cultures are extensively used to study in vitro toxic effect of xenobiotics. When using multicellular spheroids, the question about their optimal size should be solved: small spheroids are difficult to manipulate, while large size of spheroids impairs the transport of nutrients and oxygen into the center. Mathematical models describing the distribution of substances in multicellular spheroids numerical procedure for solving differential equation system, which complicates their use in laboratory practice. We proposed and experimentally evaluated a new mathematical model describing oxygen distribution in HepaRG cell spheroids. Markers of functional activity were studied in spheroids of different size. The maximum size of spheroids that can be maintained in culture for 9 days without necrosis was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. P. Buchwald, Theor. Biol. Med. Model, 6, doi: 10.1186/1742-4682-6-5c(2009).

  2. E. Curcio, S.Salermno, G. Barbieri, et al., Biomaterials, 28, No. 36, 5487-5497 (2007).

  3. R. Glicklis, J. C.Merchuk, and S. Cohen, Biotechnol. Bioeng., 86, No. 6, 672-680 (2004).

  4. F. P. Guengerich, Chem. Biol. Interact., 106, No. 3, 161-182 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. P. Gunness, D. Mueller, V. Shevchenko, et al., Toxicol. Sci., 133, No. 1, 67-78 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. D. G. Jennen, C. Magkonfopoulou, H. B. Ketelslegers, et al., Toxicol. Sci., 115, No. 1, 66-79 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. E. M. Materne, A. G. Tonevitsky, and U. Marx, Lab. Chip, 13, No. 18, 3481-3495 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. M. Moisenovich, A. Tonevitsky, and I. Agapov, Eur. J. Cell Biol., 81, No. 10, 529-538 (2002).

    Article  CAS  Google Scholar 

  9. J. F. Patzer 2nd, Artif. Organs, 28, No. 1, 83-98 (2004).

    Article  PubMed  Google Scholar 

  10. S. C. Ramaiahgari, M. W. den Braver, and B. Herpers, Arch. Toxicol., 88, No. 5, 1083-1095 (2014).

    CAS  PubMed  Google Scholar 

  11. G. Repetto, A. del Peso, and J. L. Zurita, Nat. Protoc., 3, No. 7, 1125-1131 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. T. R. Samatov, M. U. Shkurnikov, S. A. Tonevitskaya, and A. G. Tonevitsky, Prog. Histochem. Cytochem., 49, No. 4, 21-29 (2015).

    Article  PubMed  Google Scholar 

  13. M. D. Smith, A. D. Smirthwaite, D. E. Cairns, et al., Int. J. Artif. Organs, 19, No. 1, 36-44 (1996).

    CAS  PubMed  Google Scholar 

  14. B. Stoll, W. Gerok, F. Lang, and D. Häussinger, Biochem. J., 287, Pt 1, 217-222 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. I. Wagner, E. M. Materne, S. Brincker, et al., Lab. Chip, 13, No. 18, 3538-3547 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Aleksandrova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 160, No. 12, pp. 836-840, December, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, A.V., Pulkova, N.P., Gerasimenko, T.N. et al. Mathematical and Experimental Model of Oxygen Diffusion for HepaRG Cell Spheroids. Bull Exp Biol Med 160, 857–860 (2016). https://doi.org/10.1007/s10517-016-3326-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-016-3326-1

Key Words

Navigation