Log in

Dietary protein-to-carbohydrate ratios affect metabolism and growth of juvenile surubim cachara (Pseudoplatystoma reticulatum)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effects of dietary carbohydrates (CHO) and protein on growth performance, nutrient retention, blood metabolites, tissue energy reserves (hepatic glycogen and lipids, mesenteric fat index, and hepatosomatic index), and key metabolic enzyme activities (hexokinase, glucokinase, glucose-6-phosphate dehydrogenase, and aspartate aminotransferase) of surubim cachara (Pseudoplatystoma reticulatum). Six experimental diets containing one of two CHO levels (170 or 300 g kg−1) and three crude protein (CP) levels (360, 400, or 440 g kg−1) were fed to four replicate groups of P. reticulatum (69.2 ± 4.4 g) for 60 days. The results showed that 300 g kg−1 CHO resulted in a worse final weight (FW, 208.4 ± 26.9 g), weight gain (WG, 139.4 ± 23.9 g), specific growth rate (SGR, 1.8 ± 0.2% day−1), apparent feed conversion (AFC, 1.5 ± 0.3), and protein efficiency ratio (PER, 163.7 ± 23.4%) than fish fed 170 g kg−1 CHO (FW, 241.4 ± 37.3 g; WG, 171.9 ± 36.6 g; SGR, 2.1 ± 0.2% day−1; AFC, 1.2 ± 0.2; PER, 203.7 ± 36.9%). Fish fed 170 g kg−1 CHO showed greater retention of CP (REcp, 36.3 ± 6.9%) and energy (REge, 23.9 ± 5.6%) in their carcass than fish fed 300 g kg−1 CHO (REcp, 28.9 ± 3.9%, REge, 18.5 ± 3.7%). The highest blood glucose levels (97.7 ± 32.7 mg dL−1) were observed in fish fed the 300CHO/400CP diet, and they had a significantly lower mesenteric fat index (0.85 ± 0.26%) than fish fed with the 170CHO/400CP diet (1.25 ± 0.33%). Hepatic hexokinase activity increased in fish fed 300 g kg−1 CHO, resulting in an activity of 5.0 μmol mg−1 of protein, whereas fish fed 170 g kg−1 CHO had an activity of 3.2 μmol mg−1 of protein. These results demonstrate that dietary CHO directly affect the intermediary metabolism of P. reticulatum and feeding 300 g kg−1 CHO and 440 g kg−1 CP should be considered excessive as it results in decreased nutrient retention in the carcass and decreased growth performance despite metabolic adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AOAC (2000) Official methods of analysis of AOAC international, 17th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  • Amin MN, Barnes RK, Adams LR (2014) Effects of different protein and carbohydrate levels on growth performance and feed utilization of brook trout, Salvelinus fontinalis (Mitchill, 1814), at two temperatures. J Appl Ichthyol 30:340–349

    Article  CAS  Google Scholar 

  • Beutler HO (1984) Starch. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag, Chemie Weinheim, Basel, pp 2–10

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) Rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brasil (2012) Boletim estatístico da pesca e aquicultura: Brasil 2010. Ministério da Pesca e Aquicultura, Brasília, Brazil

    Google Scholar 

  • Buitrago-Suárez UA, Burr BM (2007) Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512:1–38

    Google Scholar 

  • Cain K, Skilleter DN (1987) Preparation and use of mitochondria in toxicological research. In: Snell K, Mullock B (eds) Biochemical toxicology. IRL Press, Oxford, pp 217–254

    Google Scholar 

  • Campos JL (2010) O cultivo do pintado (Pseudoplatystoma corruscans, Spix; Agassiz, 1829), e outras espécies do gênero Pseudoplatystoma e seus híbridos. In: Baldisserotto B, Gomes LC (eds) Espécies nativas para piscicultura no Brasil. UFSM, Santa Maria, pp 335–361

    Google Scholar 

  • Castro GSF, Mialich MS, Anjos EM et al (2009) Caracterização da esteatose hepática não alcoólica induzida por dieta hipoprotéica em ratos. Medicina 42:48–53

    Google Scholar 

  • Dabrowski K, Guderley H (2002) Intermediary metabolism. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, New York, pp 309–365

    Google Scholar 

  • Enes P, Panserat S, Kaushik S et al (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Phys A 143:86–96

    Article  Google Scholar 

  • Enes P, Panserat S, Kaushik S et al (2009) Nutritional regulation of hepatic glucose metabolism. Fish Physiol Biochem 35:519–539

    Article  CAS  PubMed  Google Scholar 

  • Enes P, Peres H, Couto A et al (2010) Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 36:903–910

    Article  CAS  PubMed  Google Scholar 

  • Gauthier MS, Couturier K, Latour JG et al (2003) Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol 94:2127–2134

    Article  PubMed  Google Scholar 

  • Guerreiro I, Peres H, Castro C et al (2014) Water temperature does not affect protein sparing by dietary carbohydrate in Senegalese sole (Solea senegalensis) juveniles. Aquac Res 45:289–298

    Article  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194

    Article  CAS  Google Scholar 

  • Higuera M, Cardenas P (1984) Influence of dietary composition on gluconeogenesis from L-(U-14C) glutamate in rainbow trout (Salmo gairdneri). Comp Biochem Physiol 81:391–395

    Article  Google Scholar 

  • Kamalam BS, Medale F, Panserat S (2017) Utilization of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture 467:3–27

    Article  CAS  Google Scholar 

  • Kirsch R, Clarkson V, Shephard EG et al (2003) Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18:1272–1282

    Article  PubMed  Google Scholar 

  • Kumar S, Sahu NP, Pal AK et al (2009) Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous alpha-amylase in the diet. Fish Physiol Biochem 35:301–315

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee J (2004) Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Platichthys stellatus. Fisheries Sci 70:53–58

    Article  CAS  Google Scholar 

  • Lieber CS, Leo MA, Mak KM et al (2004) Model of nonalcoholic steatohepatitis. Am J Clin Nutr 79:502–509

    CAS  PubMed  Google Scholar 

  • Lundstedt LM, Melo JFB, Moraes G (2004) Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comp Biochem Phys B 137:331–339

    Article  CAS  Google Scholar 

  • Ma F, Li X, Li B et al (2015) Effects of extruded and pelleted diets with differing protein levels on growth and nutrient retention of tilapia, Oreochromis niloticus x O. aureus. Aquac Int 23:1341–1356

    Article  CAS  Google Scholar 

  • Morales AE, Garcia L, Higuera M (1990) Influence of handling and/or anesthesia on stress response in rainbow-trout—effects on liver primary metabolism. Comp Biochem Phys A 95:87–93

    Article  Google Scholar 

  • Panserat S, Capilla E, Gutierrez J et al (2001) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol 128:275–283

    Article  CAS  Google Scholar 

  • Pérez-Jiménez A, Guedes MJ, Morales AE et al (2007) Metabolic responses to short starvation and refeeding in Dicentrarchus labrax—effect of dietary composition. Aquaculture 265:325–335

    Article  Google Scholar 

  • Pérez-Jiménez A, Abellán E, Arizcun M et al (2015) Nutritional and metabolic responses in common dentex (Dentex dentex) fed on different types and levels of carbohydrates. Comp Biochem Phys A 184:56–64

    Article  Google Scholar 

  • Perry SF, Walsh PJ, Mommsen TP et al (1988) Metabolic consequences of hypercapnia in the rainbow trout Salmo gairdneri: β-adrenergic effects. Gen Comp Endocrinol 69:439–447

    Article  CAS  PubMed  Google Scholar 

  • Reinhold JG (1953) Manual determination of serum total protein, albumin and globulin fraction by biuret method. In: Reiner M (ed) Standard method of clinical chemistry. Academic Press, Ney work, p 88

    Google Scholar 

  • Rodrigues APO, Pauletti P, Kindlein L et al (2009) Intestinal morphology and histology of the striped catfish Pseudoplatystoma fasciatum (Linnaeus, 1766) fed dry diets. Aquac Nutr 15:559–563

    Article  Google Scholar 

  • Shiau SY, Lin YH (2001) Carbohydrate utilization and its protein-sparing effect in diets for grouper (Epinephelus malabaricus). Anim Sci 73:299–304

    Article  CAS  Google Scholar 

  • Takahashi LS, Cyrino JEP (2006) Dietary carbohydrate level on growth performance of speckled catfish, Pseudoplatystoma coruscans. J Aquac Trop 21:13–19

    Google Scholar 

  • Tian LX, Liu YJ, Yang HJ et al (2012) Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquac Int 20:283–293

    Article  CAS  Google Scholar 

  • Viaplana-Marín I, Fernández-Borrás J, Blasco J (2006) Effects of the protein/carbohydrate ratio of extruded diets on protein synthesis, protein growth and body composition in juvenile brown trout (Salmo trutta). Aquac Int 14:337–353

    Article  Google Scholar 

  • Vijayan MM, Ballantine JS, Leatherland JF (1990) High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquaculture 88:371–381

    Article  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80

    Article  CAS  Google Scholar 

  • **ao X, Han D, Zhu X et al (2014) Effect of dietary cornstarch levels on growth performance, enzyme activity and hepatopancreas histology of juvenile red swamp crayfish, Procambarus clarkia (Girard). Aquaculture 426:112–119

    Article  Google Scholar 

  • Zivkovic AM, German JB, Sanyal AJ (2007) Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 86:285–300

    CAS  PubMed  Google Scholar 

  • Zhou C, Ge X, Niu J et al (2015) Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. Aquaculture 437:390–397

    Article  CAS  Google Scholar 

  • Zhou P, Wang M, **e F et al (2016) Effects of dietary carbohydrate to lipid ratios on growth performance, digestive enzyme and hepatic carbohydrate metabolic enzyme activities of large yellow croaker (Larmichthys crocea). Aquaculture 452:45–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Research Foundation of São Paulo (FAPESP) for the grants, Ingredion Incorporated for providing the pre-gelatinized starch, ADM Brazil for the supply of soy protein concentrate, and Poli-Nutri Food for the ingredients in the diets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Susumu Takahashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.F.N., Ha, N., Biller-Takahashi, J.D. et al. Dietary protein-to-carbohydrate ratios affect metabolism and growth of juvenile surubim cachara (Pseudoplatystoma reticulatum). Aquacult Int 26, 349–362 (2018). https://doi.org/10.1007/s10499-017-0213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0213-3

Keywords

Navigation