Log in

Dietary tryptophan requirements of juvenile pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

An 8-week growth trial was designed to study the effect of dietary tryptophan on juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–0.80 g L−1). Six diets with different concentration of l-tryptophan (2.61, 3.11, 3.61, 4.11, 4.61 and 5.11 g kg−1 dry diet, defined as diet T1, T2, T3,T4, T5 and T6, respectively) were randomly assigned to triplicate groups of 30 shrimps (0.43 ± 0.005 g). The results indicated that 3.61 g kg−1 dietary tryptophan (diet T3) treatment gained the maximum weight gain, the highest protein efficiency ratio and body protein deposition, the relative muscle weight, and the lowest feed conversion ratio, hepatosomatic index, haemolymph urea nitrogen concentration and AST and ALT activities (P < 0.05). The polynomial regression calculated using weight gain, feed conversion ratio and body protein deposition indicated that the optimal dietary tryptophan requirement for L. vannamei reared in low-salinity water was 3.65–3.95 g kg−1 tryptophan of dry diet, correspondingly 8.90–9.63 g kg−1 of dietary protein. To identify the mechanism underlying tryptophan requirement, haemolymph metabolites with different treatments were analysed. The results revealed that lack or excess dietary tryptophan led to significant different metabolite profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

(ALT):

Alanine aminotransferase

(AST):

Aspartate aminotransferase

(BPD):

Body protein deposition

(CHO):

Cholesterol

(EAAs):

Essential amino acids

(FBW):

Final body weight

(FCR):

Feed conversion ratio

(FI):

Feed intake

(HUN):

Haemolymph urea nitrogen

(HSI):

Hepatosomatic index

(PER):

Protein efficiency ratio

(PLS-DA):

Partial least squares discriminant analysis

(TP):

Total protein

(TG):

Triacylglycerol

(VIP):

Variable importance parameters

(WG%):

Weight gain percentage

References

  • Abidi SF, Khan MA (2007) Dietary leucine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac Res 38(5):478–486

    Article  CAS  Google Scholar 

  • Abidi SF, Khan MA (2010) Dietary tryptophan requirement of fingerling Rohu, Labeo rohita (Hamilton), based on growth and body composition. J World Aquac Soc 41(5):700–709

    Article  Google Scholar 

  • Abimorad EG, Carneiro DJ (2007) Digestibility and performance of pacu (Piaractus mesopotamicus) juveniles-fed diets containing different protein, lipid and carbohydrate levels. Aquac Nutr 13:1–9

    Article  CAS  Google Scholar 

  • Ahmed I, Khan MA (2005) Dietary tryptophan requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquac Res 36:687–695

    Article  CAS  Google Scholar 

  • Akiyama T, Oohara I, Yamamoto T (1997) Comparison of essential amino acid requirements with A/E ratio among fish species. Fish Sci 63:963–970

    CAS  Google Scholar 

  • Alam MS, Teshima S, Koshio S et al (2003) Optimum dietary threonine level for juvenile Japanese flounder Paralichthys olivaceus. Asian Fisheries Science 16:175–184

    Google Scholar 

  • AOAC (1984) Association of Official Analytical Chemists. Official methods of analysis, 14th edn. AOAC, Arlington, Virginia

    Google Scholar 

  • Baker DH, Batal AB, Parr TM et al (2002) Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine, and valine for chicks during the second and third weeks posthatch. Poult Sci 81:485–494

    Article  CAS  PubMed  Google Scholar 

  • Berge GE, Sveier H, Lied E (2002) Effects of feeding Atlantic salmon (Salmo salar L.) imbalanced levels of lysine and arginine. Aquac Nutr 8:239–248

    Article  CAS  Google Scholar 

  • Cai PP, Lu HM (2013) Efects of deproteinization and derivatization in serum preparation on serum metabolome based on gas chromatography-mass spectrometry. Chinese J Anal Chem 08:1183–1187

    Google Scholar 

  • Coloso RM, Murillo-Gurrea DP, Borlongan IG et al (2004) Tryptophan requirement of juvenile Asian sea bass Lates calcarifer. J Appl Ichthyol 20:43–47

    Article  CAS  Google Scholar 

  • Cowey CB (1995) Protein and amino acid requirements: a critique of methods. J Appl Ichthyol 11:199–204

    Article  CAS  Google Scholar 

  • De Silva SS, Gunasekera RM, Gooley G (2000) Digestibility and amino acid availability of three protein-rich ingredient-incorporated diets by Murray cod Maccullochella peelii peelii (Mitchell) and the Australian shortfin eel Anguilla australis Richardson. Aquac Res 31(2):195–205

    Article  Google Scholar 

  • Gahl MJ, Finke MD, Crenshaw TD et al (1996) Efficiency of lysine or threonine retention in growing rats fed diets limiting in either lysine or threonine. J Nutr 126:3090–3096

    CAS  PubMed  Google Scholar 

  • Gaylord TG, Rawles SD, Davis KB (2005) Dietary tryptophan requirement of hybrid striped bass (Morone chrysops×M-saxatilis). Aquac Nutr 11(5):367–374

    Article  CAS  Google Scholar 

  • Hernández MD, Martínez FJ, Jover M et al (2007) Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture 263(1):159–167

    Article  Google Scholar 

  • Hoseini SM, Hosseini SA (2010) Effect of dietary L-tryptophan on osmotic stress tolerance in common carp, Cyprinus carpio, juveniles. Fish Physiol Biochem 36(4):1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Hseu JR, Lu FI, Su HM et al (2003) Effect of exogenous tryptophan on cannibalism, survival and growth in juvenile grouper, Epinephelus coioides. Aquaculture 218(1):251–263

    Article  CAS  Google Scholar 

  • Huai MY, Tian LX, Liu YJ et al (2009) Quantitative dietary threonine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquac Res 40:904–914

    Article  CAS  Google Scholar 

  • ** Y, Tian LX, **e SW et al (2015) Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 437:75–83

    Article  CAS  Google Scholar 

  • Keszthelyi D, Troost FJ, Masclee AAM (2009) Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function[J]. Neurogastroenterology & Motility 21(12):1239–1249

    Article  CAS  Google Scholar 

  • Le Floc’H N, Seve B (2007) Biological roles of tryptophan and its metabolism: potential implications for pig feeding. Livest Sci 112:23–32

    Article  Google Scholar 

  • Leopoldo J, Laranja Q, Quinitio ET et al (2010) Effects of dietary L-tryptophan on the agonistic behavior, growth and survival of juvenile mud crab Scylla serrata. Aquaculture 310:84–90

    Article  Google Scholar 

  • Lepage O, Tottmar O, Winberg S (2002) Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J Exp Biol 205:3679–3687

    CAS  PubMed  Google Scholar 

  • Lepage O, Vilchez IM, Pottinger TG et al (2003) Time-course of the effect of dietary L-tryptophan on plasma cortisol levels in rainbow trout Oncorhynchus mykiss. J Exp Biol 206:3589–3599

    Article  PubMed  Google Scholar 

  • Liu FJ, Liu YJ, Tian LX et al (2014) Quantitative dietary isoleucine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquac Int 22(4):1481–1497

    Article  CAS  Google Scholar 

  • Mack S, Bercovici D, De Groote G et al (1999) Ideal amino acid profile and dietary lysine specification for broiler chickens of 20 to 40 days of age. Br Poult Sci 40:257–265

    Article  CAS  PubMed  Google Scholar 

  • Matte JJ, Le Floc’H N, Primot Y et al (2011) Interaction between dietary tryptophan and pyridoxine on tryptophan metabolism, immune responses and growth performance in post-weaning pigs. Anim Feed Sci Technol 170:256–264

    Article  CAS  Google Scholar 

  • Millamena OM, Teruel MB, Kanazawa A et al (1999) Quantitative dietary requirements of postlarval tiger shrimp, Penaeus monodon, for histidine, isoleucine, leucine, phenylalanine and tryptophan. Aquaculture 179:169–179

    Article  CAS  Google Scholar 

  • Papoutsoglou SE, Karakatsouli N, Chiras GL (2005a) Dietary L-tryptophan and tank colour effects on growth performance of rainbow trout (Oncorhynchus mykiss) juveniles reared in a recirculating water system. Aquac Eng 32:277–284

    Article  Google Scholar 

  • Papoutsoglou SE, Karakatsouli N, Koustas P (2005b) Effects of dietary L-tryptophan and lighting conditions on growth performance of European sea bass (Dicentrarchus labrax) juveniles reared in a recirculating water system. J Appl Ichthyol 21:520–524

    Article  CAS  Google Scholar 

  • Pérez-Sánchez J, Le Bail PY (1999) Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177:117–128

    Article  Google Scholar 

  • Piedecausa MA, Mazón MJ, García BG et al (2007) Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture 263:211–219

    Article  CAS  Google Scholar 

  • Robbins KR, Saxton AM, Southern LL (2006) Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci 84(Suppl. 1):E155–E165

    Article  PubMed  Google Scholar 

  • Shiau SY, Lo PS (2000) Dietary choline requirements of juvenile hybrid tilapia, Oreochromis niloticus × O-aureus. J Nutr 130:100–103

    CAS  PubMed  Google Scholar 

  • Simmons L, Moccia RD, Bureau DP et al (1999) Dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus (L.). Aquac Nutr 5:93–100

    Article  CAS  Google Scholar 

  • Tejpal CS, Pal AK, Sahu NP et al (2009) Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture 293:272–277

    Article  CAS  Google Scholar 

  • Thoman ES, Davis DA, Arnold CR (1999) Evaluation of growout diets with varying protein and energy levels for red drum (Sciaenops ocellatus). Aquaculture 176:343–353

    Article  CAS  Google Scholar 

  • Van Anholt RD, Spanings F, Koven WM et al (2004) Dietary supplementation with arachidonic acid in tilapia (Oreochromis mossambicus) reveals physiological effects not mediated by prostaglandins. Gen Comp Endocrinol 139:215–226

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Albores F, Jimenez-Vega F, Yepiz-Plascencia GM (1997) Purification and comparison of b-1,3-glucan binding protein from white shrimp (P. vannamei). Comp Biochem Physiol B 116:1–6

    Article  Google Scholar 

  • Zeitoun IH, Ullrey DE, Magee WT (1976) Quantifying nutrient requirements of fish. J Fish Res Board Can 33:167–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by China Agriculture Research System-47 and the National Key Technology R and D Program of China (2012BAC07B05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan ** or Fu-Jia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, Y., Liu, FJ., Liu, YJ. et al. Dietary tryptophan requirements of juvenile pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquacult Int 25, 955–968 (2017). https://doi.org/10.1007/s10499-016-0098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0098-6

Keywords

Navigation