Log in

Nobiletin as an inducer of programmed cell death in cancer: a review

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8(2):149–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jung H, Kim HS, Kim JY, Sun J-M, Ahn JS, Ahn M-J et al (2019) DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun 10(1):1–12

    Article  CAS  Google Scholar 

  3. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS et al (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol 33(11):1152–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung IL, Kang HJ, Kim KC, Kim IG (2010) PTEN/pAkt/p53 signaling pathway correlates with the radioresponse of non-small cell lung cancer. Int J Mol Med 25(4):517–523

    CAS  PubMed  Google Scholar 

  5. Trueba GP, Sánchez GM, Giuliani A (2004) Oxygen free radical and antioxidant defense mechanism in cancer. Front Biosci. 9:2029–2044

    Article  PubMed  Google Scholar 

  6. Damia G, Broggini M (2019) Platinum resistance in ovarian cancer: role of DNA repair. Cancers 11(1):119

    Article  CAS  PubMed Central  Google Scholar 

  7. Salles B, Calsou P, Frit P, Muller C (2006) The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radiotherapy. Pathol Biol (Paris) 54(4):185–193

    Article  CAS  Google Scholar 

  8. Friedmann B, Caplin M, Hartley JA, Hochhauser D (2004) Modulation of DNA repair in vitro after treatment with chemotherapeutic agents by the epidermal growth factor receptor inhibitor gefitinib (ZD1839). Clin Cancer Res 10(19):6476–6486

    Article  CAS  PubMed  Google Scholar 

  9. Kasiappan R, Safe S (2016) ROS-inducing agents for cancer chemotherapy. Reactive Oxygen Species 1(1):22–37

    Article  Google Scholar 

  10. Hubbard SR, Miller WT (2007) Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol 19(2):117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mortezaee K, Najafi M (2021) Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 157:103180. https://doi.org/10.1016/j.critrevonc.2020.103180

    Article  PubMed  Google Scholar 

  12. Farhood B, Ashrafizadeh M, Khodamoradi E, Hoseini-Ghahfarokhi M, Afrashi S, Musa AE et al (2020) Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 250:117570. https://doi.org/10.1016/j.lfs.2020.117570

    Article  CAS  PubMed  Google Scholar 

  13. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu H-Y, Lin L-T et al, (eds) (2015) Broad targeting of resistance to apoptosis in cancer. Seminars in cancer biology. Elsevier.

  14. Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radical Biol Med 52(1):7–18

    Article  CAS  Google Scholar 

  15. Gumulec J, Balvan J, Sztalmachova M, Raudenska M, Dvorakova V, Knopfova L et al (2014) Cisplatin-resistant prostate cancer model: differences in antioxidant system, apoptosis and cell cycle. Int J Oncol 44(3):923–933

    Article  CAS  PubMed  Google Scholar 

  16. Sznarkowska A, Kostecka A, Meller K, Bielawski KP (2017) Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8(9):15996–16016. https://doi.org/10.18632/oncotarget.13723

    Article  PubMed  Google Scholar 

  17. Yu C, Yang B, Najafi M (2021) Targeting of cancer cell death mechanisms by curcumin: implications to cancer therapy. Basic Clin Pharmacol Toxicol. https://doi.org/10.1111/bcpt.13648

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Li M, Tang C, Huang Z, Najafi M (2021) Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis. https://doi.org/10.1007/s10495-021-01689-7

    Article  PubMed  Google Scholar 

  19. Wang S, Wu X, Tan M, Gong J, Tan W, Bian B et al (2012) Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. J Ethnopharmacol 140(1):33–45

    Article  PubMed  Google Scholar 

  20. Wolf CP, Rachow T, Ernst T, Hochhaus A, Zomorodbakhsch B, Foller S et al (2021) Interactions in cancer treatment considering cancer therapy, concomitant medications, food, herbal medicine and other supplements. J Cancer Res Clin Oncol 148:461–473

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lam KH, Alex D, Lam IK, Tsui SK, Yang ZF, Lee SM (2011) Nobiletin, a polymethoxylated flavonoid from citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model. J Cell Biochem 112(11):3313–3321. https://doi.org/10.1002/jcb.23257

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Zhang X, Zhang C, Bai X, Zhang J, Zhao X et al (2016) Nobiletin promotes antioxidant and anti-inflammatory responses and elicits protection against ischemic stroke in vivo. Brain Res 1636:130–141. https://doi.org/10.1016/j.brainres.2016.02.013

    Article  CAS  PubMed  Google Scholar 

  23. Walle T (2007) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17(5):354–362. https://doi.org/10.1016/j.semcancer.2007.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Y-Y, Liang J-J, Wang D-L, Chen J-B, Cao J-P, Wang Y et al (2022) Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Critic Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2030297

    Article  Google Scholar 

  25. Morley KL, Ferguson PJ, Koropatnick J (2007) Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett 251(1):168–178. https://doi.org/10.1016/j.canlet.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  26. Yoshimizu N, Otani Y, Saikawa Y, Kubota T, Yoshida M, Furukawa T et al (2004) Anti-tumour effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol Ther 20:95–101

    Article  CAS  PubMed  Google Scholar 

  27. Sousa DP, Pojo M, Pinto AT, Leite V, Serra AT, Cavaco BM (2020) Nobiletin alone or in combination with cisplatin decreases the viability of anaplastic thyroid cancer cell lines. Nutr Cancer 72(2):352–363. https://doi.org/10.1080/01635581.2019.1634745

    Article  CAS  PubMed  Google Scholar 

  28. Feng S, Zhou H, Wu D, Zheng D, Qu B, Liu R et al (2020) Nobiletin and its derivatives overcome multidrug resistance (MDR) in cancer: total synthesis and discovery of potent MDR reversal agents. Acta Pharma Sin B 10(2):327–343. https://doi.org/10.1016/j.apsb.2019.07.007

    Article  CAS  Google Scholar 

  29. Yoshigai E, Machida T, Okuyama T, Mori M, Murase H, Yamanishi R et al (2013) Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes. Biochem Biophys Res Commun 439(1):54–59. https://doi.org/10.1016/j.bbrc.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  30. Lin N, Sato T, Takayama Y, Mimaki Y, Sashida Y, Yano M et al (2003) Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol 65(12):2065–2071. https://doi.org/10.1016/s0006-2952(03)00203-x

    Article  CAS  PubMed  Google Scholar 

  31. Zhang N, Yang Z, **ang SZ, ** YG, Wei WY, Bian ZY et al (2016) Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 417(1–2):87–96. https://doi.org/10.1007/s11010-016-2716-z

    Article  CAS  PubMed  Google Scholar 

  32. Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F et al (2020) Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways. Biomedicines 8(5):110

    Article  CAS  PubMed Central  Google Scholar 

  33. Mizuno H, Yoshikawa H, Usuki T (2019) Extraction of nobiletin and tangeretin from peels of Shekwasha and Ponkan using [C2mim][(MeO)(H)PO2] and centrifugation. Nat Prod Commun. https://doi.org/10.1177/1934578X19845816

    Article  Google Scholar 

  34. Seoka M, Ma G, Zhang L, Yahata M, Yamawaki K, Kan T et al (2020) Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci Rep 10(1):15288. https://doi.org/10.1038/s41598-020-72277-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee Y-H, Charles AL, Kung H-F, Ho C-T, Huang T-C (2010) Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind Crops Prod 31(1):59–64. https://doi.org/10.1016/j.indcrop.2009.09.003

    Article  CAS  Google Scholar 

  36. Mitani R, Tashiro H, Arita E, Ono K, Haraguchi M, Tokunaga S et al (2021) Extraction of nobiletin and tangeretin with antioxidant activity from peels of Citrus poonensis using liquid carbon dioxide and ethanol entrainer. Sep Sci Technol 56(2):290–300. https://doi.org/10.1080/01496395.2020.1713813

    Article  CAS  Google Scholar 

  37. Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS (2018) Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 413:122–134

    Article  CAS  PubMed  Google Scholar 

  38. Yang L, Chen Y, Liu Y, **ng Y, Miao C, Zhao Y et al (2021) The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol 11:2364

    Article  Google Scholar 

  39. Deveci Ozkan A, Kaleli S, Onen HI, Sarihan M, Guney Eskiler G, Kalayci Yigin A et al (2020) Anti-inflammatory effects of nobiletin on TLR4/TRIF/IRF3 and TLR9/IRF7 signaling pathways in prostate cancer cells. Immunopharmacol Immunotoxicol 42(2):93–100

    Article  CAS  PubMed  Google Scholar 

  40. Sp N, Kang DY, Lee J-M, Jang K-J (2021) Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 signaling in non-small cell lung cancer (NSCLC) cells. Int J Mol Sci 22(18):9843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK et al (2017) Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER+ breast cancer cells. Int J Mol Sci 18(5):935

    Article  PubMed Central  CAS  Google Scholar 

  42. Hsiao P-C, Lee W-J, Yang S-F, Tan P, Chen H-Y, Lee L-M et al (2014) Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumor Biology 35(12):11903–11911

    Article  CAS  PubMed  Google Scholar 

  43. Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X (2019) Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J Agric Food Chem 67(18):5122–5134

    Article  CAS  PubMed  Google Scholar 

  44. Ma X, ** S, Zhang Y, Wan L, Zhao Y, Zhou L (2014) Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res 28(4):560–567

    Article  CAS  PubMed  Google Scholar 

  45. Zhang N, Yang Z, **ang S-Z, ** Y-G, Wei W-Y, Bian Z-Y et al (2016) Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Mol Cell Biochem 417(1):87–96

    Article  CAS  PubMed  Google Scholar 

  46. He Z, Li X, Chen H, He K, Liu Y, Gong J et al (2016) Nobiletin attenuates lipopolysaccharide/D-galactosamine-induced liver injury in mice by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated cytokine production. Mol Med Rep 14(6):5595–5600

    Article  CAS  PubMed  Google Scholar 

  47. Mortezaee K, Parwaie W, Motevaseli E, Mirtavoos-Mahyari H, Musa AE, Shabeeb D et al (2019) Targets for improving tumor response to radiotherapy. Int Immunopharmacol 76:105847. https://doi.org/10.1016/j.intimp.2019.105847

    Article  CAS  PubMed  Google Scholar 

  48. Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE et al (2020) Targets for protection and mitigation of radiation injury. Cell Mol Life Sci. 77(16):3129–3159. https://doi.org/10.1007/s00018-020-03479-x

    Article  CAS  PubMed  Google Scholar 

  49. Hattori T, Tagawa H, Inai M, Kan T, Kimura S-I, Itai S et al (2019) Transdermal delivery of nobiletin using ionic liquids. Sci Rep. 9(1):1–11

    Article  Google Scholar 

  50. Kesarwani K, Gupta R, Mukerjee A (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3(4):253–266. https://doi.org/10.1016/S2221-1691(13)60060-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang M, Feng K, Huang G, **n Y, **ao J, Cao Y et al (2020) Assessment of oral bioavailability and biotransformation of emulsified nobiletin using in vitro and in vivo models. J Agric Food Chem 68(41):11412–11420. https://doi.org/10.1021/acs.jafc.0c04450

    Article  CAS  PubMed  Google Scholar 

  52. Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S (2020) Nobiletin as a molecule for formulation development: an overview of advanced formulation and nanotechnology-based strategies of nobiletin. AAPS PharmSciTech 21(6):226. https://doi.org/10.1208/s12249-020-01767-0

    Article  CAS  PubMed  Google Scholar 

  53. Ashrafizadeh M, Farhood B, Musa AE, Taeb S, Najafi M (2020) Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol. 86:106761

    Article  CAS  PubMed  Google Scholar 

  54. Nicholson SE, Keating N, Belz GT (2019) Natural killer cells and anti-tumor immunity. Mol Immunol 110:40–47

    Article  CAS  PubMed  Google Scholar 

  55. Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M et al (2019) NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol 12(1):50–60

    Article  CAS  PubMed  Google Scholar 

  56. Farhood B, Najafi M, Salehi E, Hashemi Goradel N, Nashtaei MS, Khanlarkhani N et al (2019) Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem 120(1):71–76

    Article  CAS  PubMed  Google Scholar 

  57. Dwivedi R, Pandey R, Chandra S, Mehrotra D (2020) Apoptosis and genes involved in oral cancer-a comprehensive review. Oncol Rev. https://doi.org/10.4081/oncol.2020.472

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rapoport BL, Anderson R (2019) Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci 20(4):959

    Article  CAS  PubMed Central  Google Scholar 

  59. Mari A, D’Andrea D, Abufaraj M, Foerster B, Kimura S, Shariat SF (2017) Genetic determinants for chemo-and radiotherapy resistance in bladder cancer. Translational andrology and urology 6(6):1081

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu D-L, Lou Z-P, Ma F-Y, Najafi M (2022) The interactions of paclitaxel with tumour microenvironment. Int Immunopharmacol 105:108555. https://doi.org/10.1016/j.intimp.2022.108555

    Article  CAS  PubMed  Google Scholar 

  61. Yang J, Zhao X, Tang M, Li L, Lei Y, Cheng P et al (2017) The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget 8(14):23492

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ (2019) Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells. Molecules. https://doi.org/10.3390/molecules24162881

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sharikadze N, Jojua N, Sepashvili M, Zhuravliova E, Mikeladze DG (2016) Mitochondrial target of nobiletin’s action. Nat Prod Commun 11(12):1833–1838

    PubMed  Google Scholar 

  64. Yang J, Yang Y, Wang L, ** Q, Pan M (2020) Nobiletin selectively inhibits oral cancer cell growth by promoting apoptosis and DNA damage in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 130(4):419–427. https://doi.org/10.1016/j.oooo.2020.06.020

    Article  PubMed  Google Scholar 

  65. Yadav RK, Chae S-W, Kim H-R, Chae HJ (2014) Endoplasmic reticulum stress and cancer. J. Cancer Prevent 19(2):75–88. https://doi.org/10.15430/JCP.2014.19.2.75

    Article  Google Scholar 

  66. Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W et al (2021) Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol Rep 45(3):801–808. https://doi.org/10.3892/or.2021.7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413. https://doi.org/10.1089/ars.2014.5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ikeda A, Miyata S, Yokosuka A, Mimaki Y, Ohizumi Y, Degawa M et al (2014) Estimation of endoplasmic reticulum stress-inducing ability of nobiletin, a citrus polymethoxyflavonoid, in SK-N-SH human neuroblastoma cells. Fundam Toxicol Sci 1(4):169–172. https://doi.org/10.2131/fts.1.169

    Article  CAS  Google Scholar 

  69. Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z et al (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11(9):1–12

    Article  CAS  Google Scholar 

  70. Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ (2015) PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 16(16):1843–1862

    Article  PubMed  CAS  Google Scholar 

  71. Xu Z, Wu D, Fu D, Tang C, Ge J, Zhang Z et al (2020) Nobiletin inhibits viability of human renal carcinoma cells via the JAK2/STAT3 and PI3K/Akt pathway. Cell Mol Biol. 66(5):199–203

    Article  PubMed  Google Scholar 

  72. Li N, Zhang Z, Jiang G, Sun H, Yu D (2019) Nobiletin sensitizes colorectal cancer cells to oxaliplatin by PI3K/Akt/MTOR pathway. Front Biosci (Landmark Ed) 24:303–312. https://doi.org/10.2741/4719

    Article  Google Scholar 

  73. Wei D, Zhang G, Zhu Z, Zheng Y, Yan F, Pan C et al (2019) Nobiletin inhibits cell viability via the SRC/AKT/STAT3/YY1AP1 pathway in human renal carcinoma cells. Front Pharmacol 10:690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen C, Ono M, Takeshima M, Nakano S (2014) Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines. Anticancer Res 34(4):1785–1792

    CAS  PubMed  Google Scholar 

  75. Ma W, Feng S, Yao X, Yuan Z, Liu L, **e Y (2015) Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells. Sci Rep 5(1):18789. https://doi.org/10.1038/srep18789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. **e L, **e H, Chen C, Tao Z, Zhang C, Cai L (2019) Inhibiting the PI3K/AKT/NF-κB signal pathway with nobiletin for attenuating the development of osteoarthritis: in vitro and in vivo studies. Food Funct 10(4):2161–2175. https://doi.org/10.1039/c8fo01786g

    Article  CAS  PubMed  Google Scholar 

  77. Lee Y-C, Cheng T-H, Lee J-S, Chen J-H, Liao Y-C, Fong Y et al (2011) Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem 347(1):103–115. https://doi.org/10.1007/s11010-010-0618-z

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Zheng K, Li C, Zhao Y, Li H, Liu X et al (2017) Nobiletin inhibits invasion via inhibiting AKT/GSK3β/β-catenin signaling pathway in Slug-expressing glioma cells. Oncol Rep 37(5):2847–2856. https://doi.org/10.3892/or.2017.5522

    Article  CAS  PubMed  Google Scholar 

  79. Moon JY, Manh Hung LV, Unno T, Cho SK (2018) Nobiletin enhances chemosensitivity to adriamycin through modulation of the Akt/GSK3β/βcatenin/MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells. Nutrients 10(12):1829. https://doi.org/10.3390/nu10121829

    Article  CAS  PubMed Central  Google Scholar 

  80. Timofeeva OA, Tarasova NI, Zhang X, Chasovskikh S, Cheema AK, Wang H et al (2013) STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci 110(4):1267–1272. https://doi.org/10.1073/pnas.1211805110

    Article  PubMed  PubMed Central  Google Scholar 

  81. Al Zaid Siddiquee K, Turkson J (2008) STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18(2):254–267. https://doi.org/10.1038/cr.2008.18

    Article  CAS  PubMed  Google Scholar 

  82. Nakamura H, Taguchi A, Kawana K, Kawata A, Yoshida M, Fujimoto A et al (2016) STAT3 activity regulates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cervical cancer cells. Int J Oncol 49(5):2155–2162. https://doi.org/10.3892/ijo.2016.3681

    Article  CAS  PubMed  Google Scholar 

  83. Ma Y, Ren X, Patel N, Xu X, Wu P, Liu W et al (2020) Nobiletin, a citrus polymethoxyflavone, enhances the effects of bicalutamide on prostate cancer cells via down regulation of NF-κB, STAT3, and ERK activation. RSC Adv 10(17):10254–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE (2019) NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 234(10):17187–17204. https://doi.org/10.1002/jcp.28504

    Article  CAS  PubMed  Google Scholar 

  85. Sp N, Kang DY, Kim DH, Park JH, Lee HG, Kim HJ et al (2018) Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients 10(6):772

    Article  PubMed Central  CAS  Google Scholar 

  86. Zheng Y, Bu J, Yu L, Chen J, Liu H (2017) Nobiletin improves propofol-induced neuroprotection via regulating Akt/mTOR and TLR 4/NF-κB signaling in ischemic brain injury in rats. Biomed Pharmacother 91:494–503

    Article  CAS  PubMed  Google Scholar 

  87. Liu Z, Han Y, Zhao F, Zhao Z, Tian J, Jia K (2019) Nobiletin suppresses high-glucose–induced inflammation and ECM accumulation in human mesangial cells through STAT3/NF-κB pathway. J Cell Biochem 120(3):3467–3473

    Article  CAS  PubMed  Google Scholar 

  88. Choi S-Y, Hwang J-H, Ko H-C, Park J-G, Kim S-J (2007) Nobiletin from citrus fruit peel inhibits the DNA-binding activity of NF-κB and ROS production in LPS-activated RAW 2647 cells. J Ethnopharmacol 113(1):149–455

    Article  CAS  PubMed  Google Scholar 

  89. Liu J, Wang S, Tian S, He Y, Lou H, Yang Z et al (2018) Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr Res.https://doi.org/10.29219/fnr.v62.1323

  90. Chen J, Creed A, Chen AY, Huang H, Li Z, Rankin GO et al (2014) Nobiletin suppresses cell viability through AKT Pathways in PC-3 and DU-145 prostate cancer cells. BMC Pharmacol Toxicol 15(1):59. https://doi.org/10.1186/2050-6511-15-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ashrafizadeh M, Taeb S, Haghi-Aminjan H, Afrashi S, Moloudi K, Musa AE et al (2021) Resveratrol as an enhancer of apoptosis in cancer: a mechanistic review. Anticancer Agents Med Chem 21(17):2327–2336

    Article  CAS  PubMed  Google Scholar 

  92. Moon JY, Cho M, Ahn KS, Cho SK (2013) Nobiletin induces apoptosis and potentiates the effects of the anticancer drug 5-fluorouracil in p53-mutated SNU-16 human gastric cancer cells. Nutr Cancer 65(2):286–295. https://doi.org/10.1080/01635581.2013.756529

    Article  CAS  PubMed  Google Scholar 

  93. Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Prev Biomarkers 17(7):1596–1610

    Article  CAS  Google Scholar 

  94. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4(10):e838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin J-F, Lin Y-C, Tsai T-F, Chen H-E, Chou K-Y, Hwang TI-S (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Design Dev Therapy 11:1517

    Article  CAS  Google Scholar 

  96. Chen S, Zhu X, Qiao H, Ye M, Lai X, Yu S et al (2016) Protective autophagy promotes the resistance of HER2-positive breast cancer cells to lapatinib. Tumor Biol 37(2):2321–2331

    Article  CAS  Google Scholar 

  97. Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin X-M et al (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283(28):19665–19677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin S-R, Fu Y-S, Tsai M-J, Cheng H, Weng C-F (2017) Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci 18(7):1412

    Article  PubMed Central  CAS  Google Scholar 

  99. Jia L, Ma S, Hou X, Wang X, Qased ABL, Sun X et al (2013) The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment. Oncol Lett 5(5):1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang R, Chen J, Mao L, Guo Y, Hao Y, Deng Y et al (2020) Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells. J Agric Food Chem 68(5):1326–1336. https://doi.org/10.1021/acs.jafc.9b07908

    Article  CAS  PubMed  Google Scholar 

  101. Moon JY, Cho SK (2016) Nobiletin induces protective autophagy accompanied by ER-stress mediated apoptosis in human gastric cancer SNU-16 cells. Molecules (Basel, Switzerland) 21(7):914. https://doi.org/10.3390/molecules21070914

    Article  CAS  Google Scholar 

  102. Moscat J, Diaz-Meco MT (2012) p62: a versatile multitasker takes on cancer. Trends Biochem Sci 37(6):230–236. https://doi.org/10.1016/j.tibs.2012.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang H, Chen H, ** C, Mo J, Wang H (2020) Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest and inhibition of NF-kB signalling pathway. J Buon 25(2):1070–1075

    PubMed  Google Scholar 

  104. Jiang Y-P, Guo H, Wang X-B (2018) Nobiletin (NOB) suppresses autophagic degradation via over-expressing AKT pathway and enhances apoptosis in multidrug-resistant SKOV3/TAX ovarian cancer cells. Biomed Pharmacother 103:29–37. https://doi.org/10.1016/j.biopha.2018.03.126

    Article  CAS  PubMed  Google Scholar 

  105. Tan Y, Chen Q, Li X, Zeng Z, **ong W, Li G et al (2021) Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res 40(1):153. https://doi.org/10.1186/s13046-021-01959-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y et al (2020) Pyroptosis: a new frontier in cancer. Biomed Pharmacother 121:109595. https://doi.org/10.1016/j.biopha.2019.109595

    Article  CAS  PubMed  Google Scholar 

  107. Wang L, Qin X, Liang J, Ge P (2021) Induction of pyroptosis: a promising strategy for cancer treatment. Front Oncol 11:635774. https://doi.org/10.3389/fonc.2021.635774

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu D, Wei C, Li Y, Yang X, Zhou S (2021) Pyroptosis, a new breakthrough in cancer treatment. Front Oncol 11:2820

    Google Scholar 

  109. He W-T, Wan H, Hu L, Chen P, Wang X, Huang Z et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10(1):1689. https://doi.org/10.1038/s41467-019-09397-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang J-G, Jian W-J, Li Y, Zhang J (2021) Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci 37(7):572–582. https://doi.org/10.1002/kjm2.12371

    Article  CAS  PubMed  Google Scholar 

  112. Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S et al (2020) Ferroptosis in cancer treatment: another way to rome. Frontiers Oncol. https://doi.org/10.3389/fonc.2020.571127

    Article  Google Scholar 

  113. Zuo S, Yu J, Pan H, Lu L (2020) Novel insights on targeting ferroptosis in cancer therapy. Biomarker Res 8(1):50. https://doi.org/10.1186/s40364-020-00229-w

    Article  Google Scholar 

  114. Adham AN, Hegazy MEF, Naqishbandi AM, Efferth T (2020) Induction of apoptosis, autophagy and ferroptosis by Thymus vulgaris and Arctium lappa extract in leukemia and multiple myeloma cell lines. Molecules (Basel, Switzerland). 25(21):5016. https://doi.org/10.3390/molecules25215016

    Article  CAS  Google Scholar 

  115. Gilmore AP (2005) Anoikis. Cell Death Differ 12(2):1473–1477. https://doi.org/10.1038/sj.cdd.4401723

    Article  CAS  PubMed  Google Scholar 

  116. Tai Y-L, Chen L-C, Shen T-L (2015) Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015:690690. https://doi.org/10.1155/2015/690690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sp N, Kang DY, Joung YH, Park JH, Kim WS, Lee HK et al (2017) Nobiletin inhibits angiogenesis by regulating Src/FAK/STAT3-mediated signaling through PXN in ER+ breast cancer cells. Int J Mol Sci. https://doi.org/10.3390/ijms18050935

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fu X, Tang J, Wen P, Huang Z, Najafi M (2021) Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 708:108952. https://doi.org/10.1016/j.abb.2021.108952

    Article  CAS  PubMed  Google Scholar 

  119. Oun R, Moussa YE, Wheate NJ (2018) The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 47(19):6645–6653

    Article  CAS  PubMed  Google Scholar 

  120. Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45(12):2821–2831

    Article  CAS  PubMed  Google Scholar 

  121. Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, et al (eds) (2021) Dietary flavonoids: nano delivery and nanoparticles for cancer therapy. Seminars in cancer biology. Elsevier

  122. Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B et al (2021) Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 12:155–176

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bayoumi M, Arafa MG, Nasr M, Sammour OA (2021) Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 11(1):20197. https://doi.org/10.1038/s41598-021-99756-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang X, Wang H, Li T, Chen L, Zheng B, Liu RH (2020) Nobiletin delays aging and enhances stress resistance of Caenorhabditis elegans. Int J Mol Sci. https://doi.org/10.3390/ijms21010341

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang M, Meng D, Zhang P, Wang X, Du G, Brennan C et al (2018) Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. J Agric Food Chem 66(12):3155–3160. https://doi.org/10.1021/acs.jafc.8b00509

    Article  CAS  PubMed  Google Scholar 

  126. Huang H, Li L, Shi W, Liu H, Yang J, Yuan X et al (2016) The multifunctional effects of nobiletin and its metabolites in vivo and in vitro. Evid Based Complement Alternat Med 2016:2918796. https://doi.org/10.1155/2016/2918796

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mu Q, Najafi M (2021) Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 98:107895. https://doi.org/10.1016/j.intimp.2021.107895

    Article  CAS  PubMed  Google Scholar 

  128. Fu X, He Y, Li M, Huang Z, Najafi M (2021) Targeting of the tumor microenvironment by curcumin. BioFactors 47(6):914–932. https://doi.org/10.1002/biof.1776

    Article  CAS  PubMed  Google Scholar 

  129. Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M et al (2020) Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer 20(1):791. https://doi.org/10.1186/s12885-020-07256-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ko J-H, Sethi G, Um J-Y, Shanmugam MK, Arfuso F, Kumar AP et al (2017) The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 18(12):2589. https://doi.org/10.3390/ijms18122589

    Article  CAS  PubMed Central  Google Scholar 

  131. Seki T, Kamiya T, Furukawa K, Azumi M, Ishizuka S, Takayama S et al (2013) Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer’s disease: a case series. Geriatr Gerontol Int 13(1):236–238. https://doi.org/10.1111/j.1447-0594.2012.00892.x

    Article  PubMed  Google Scholar 

  132. Yamada S, Shirai M, Ono K, Teruya T, Yamano A, Tae Woo J (2021) Beneficial effects of a nobiletin-rich formulated supplement of Sikwasa (C. depressa) peel on cognitive function in elderly Japanese subjects; a multicenter, randomized, double-blind, placebo-controlled study. Food Sci Nutr. 9(12):6844–6853. https://doi.org/10.1002/fsn3.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Popat R, Plesner T, Davies F, Cook G, Cook M, Elliott P et al (2012) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160(5):714–717

    Article  PubMed  CAS  Google Scholar 

  134. Andres-Lacueva C, Macarulla MT, Rotches-Ribalta M, Boto-Ordóñez M, Urpi-Sarda M, Rodríguez VM et al (2012) Distribution of resveratrol metabolites in liver, adipose tissue, and skeletal muscle in rats fed different doses of this polyphenol. J Agric Food Chem 60(19):4833–4840. https://doi.org/10.1021/jf3001108

    Article  CAS  PubMed  Google Scholar 

  135. Murakami I, Chaleckis R, Pluskal T, Ito K, Hori K, Ebe M et al (2014) Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin. PLoS ONE 9(12):e115359. https://doi.org/10.1371/journal.pone.0115359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by Cooperative Foundation of Shaoyang University. Scientific Research Project of Hunan Provincial Education Department (No. 20B526)

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the preparing first draft. The scientific edition was performed by MN. All authors wrote and approved the article.

Corresponding authors

Correspondence to Xuedong Chen or Masoud Najafi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain human or animal studies performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chang, Z., Lu, Q. et al. Nobiletin as an inducer of programmed cell death in cancer: a review. Apoptosis 27, 297–310 (2022). https://doi.org/10.1007/s10495-022-01721-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01721-4

Keywords

Navigation