Log in

Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem. These solutions can be reduced to the ones of an elastodynamic problem. Based on the effective medium method, these closed-form solutions can be used to establish the self-consistent equations about the frequency-dependent effective parameters, which can be numerically solved by iteration. Theoretical predictions are compared with the experimental results, and good agreement can be found. Furthermore, the analyses on the effects of microstructure and wavelength on the effective properties, resonance frequencies, and attenuation are also presented, which may provide some guidance for the microstructure design and analysis of piezoelectric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BANKS, R., O’LEARY, R. L., and HAYWARD, G. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation. Ultrasonics, 75, 132–144 (2017)

    Article  Google Scholar 

  2. TIAN, J., LI, X., LIANG, Z., DING, W., LI, X., TAO, C., and NIE, S. Fabrication of 1–3 piezoelectric composites via modified soft mold process for 40 MHz ultrasonic medical transducers. Ceramics International, 48(3), 3841–3848 (2021)

    Article  Google Scholar 

  3. JIN, P., FU, J., WANG, F., ZHANG, Y., WANG, P., LIU, X., JIAO, Y., LI, H., CHEN, Y., MA, Y., and FENG, X. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Science Advances, 7(40), 1–13 (2021)

    Article  Google Scholar 

  4. JIAO, P., HASNI, H., LAJNEF, N., and ALAVI, A. H. Mechanical metamaterial piezoelectric nanogenerator (MM-PENG): design principle, modeling and performance. Materials & Design, 187, 108214 (2019)

    Article  Google Scholar 

  5. ZHANG, G., ZHAO, P., ZHANG, X., HAN, K., ZHAO, T., ZHANG, Y., JEONG, C. K., JIANG, S., ZHANG, S., and WANG, Q. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting. Energy & Environmental Science, 11(8), 2046–2056 (2018)

    Article  Google Scholar 

  6. DUNN, M. L. and TAYA, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  7. GANDARILLA-PÉREZ, C. A., RODRÍGUEZ-RAMOS, R., SEVOSTIANOV, I., SABINA, F. J., BRAVO-CASTILLERO, J., GUINOVART-DÍAZ, R., and LAU-ALFONSO, L. Extension of Maxwell homogenization scheme for piezoelectric composites containing spheroidal inhomogeneities. International Journal of Solids and Structures, 135, 125–136 (2018)

    Article  Google Scholar 

  8. WANG, Z., ZHU, J., JIN, X. Y., CHEN, W. Q., and ZHANG, C. Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. Journal of the Mechanics and Physics of Solids, 65(1), 138–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. CHATZIGEORGIOU, G., JAVILI, A., and MERAGHNI, F. Micromechanical method for effective piezoelectric properties and electromechanical fields in multi-coated long fiber composites. International Journal of Solids and Structures, 159, 21–39 (2019)

    Article  Google Scholar 

  10. CAI, C., LIU, G. R., and LAM, K. Y. A technique for modelling multiple piezoelectric layers. Smart Materials and Structures, 10(4), 689–694 (2001)

    Article  Google Scholar 

  11. VASHISHTH, A. K. and GUPTA, V. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid. Smart Materials and Structures, 21(12), 125002 (2012)

    Article  Google Scholar 

  12. CHEN, J., GUO, J., and PAN, E. Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Composite Structures, 162, 401–410 (2017)

    Article  Google Scholar 

  13. ZHANG, Y. and GAO, Q. Calculation of reflection and transmission coefficients for waves in multilayered piezoelectric structures using the mixed variable method. The Journal of the Acoustical Society of America, 150(6), 4037–4052 (2021)

    Article  Google Scholar 

  14. WILM, M., BALLANDRAS, S., LAUDE, V., and PASTUREAUD, T. A full 3D plane-wave-expansion model for 1–3 piezoelectric composite structures. The Journal of the Acoustical Society of America, 112(3), 943–952 (2002)

    Article  Google Scholar 

  15. XIA, R., ZHU, J., YI, J., SHAO, S., and LI, Z. Guided wave propagation in multilayered periodic piezoelectric plate with a mirror plane. International Journal of Mechanical Sciences, 204(2), 106539 (2021)

    Article  Google Scholar 

  16. BALÉ, A., ROUFFAUD, R., LEVASSORT, F., BRENNER, R., and HLADKY-HENNION, A. C. Homogenization of periodic 1–3 piezocomposite using wave propagation: toward an experimental method. The Journal of the Acoustical Society of America, 149(5), 3122–3132 (2021)

    Article  Google Scholar 

  17. CAO, W. and QI, W. Plane wave propagation in finite 2–2 composites. Journal of Applied Physics, 78(7), 4627–4632 (1995)

    Article  Google Scholar 

  18. LIN, P., ZHU, Y., CHEN, Z., FEI, C., CHEN, D., ZHANG, S., LI, D., FENG, W., YANG, Y., and CHAI, C. Design and fabrication of non-periodic 1–3 composite structure for ultrasonic transducer application. Composite Structures, 285(1), 115249 (2022)

    Article  Google Scholar 

  19. RÖDIG, T., SCHÖNECKER, A., and HLADKY, A. C. Design and characterisation of 1–3 ultrasonic composites using ATILA and ultra fast laser measurements (20 MHz). IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers, Rotterdam, Netherlands (2005)

    Book  Google Scholar 

  20. HARVEY, G., GACHAGAN, A., MACKERSIE, J. W., and BANKS, R. Exploring the advantages of a random 1–3 connectivity piezocomposite structure incorporating piezoelectric fibres as the active element. IEEE Ultrasonics Symposium, Institute of Electrical and Electronics Engineers, Vancouver, BC, Canada (2006)

    Book  Google Scholar 

  21. YANG, H., CANNATA, J., WILLIAMS, J., and SHUNG, K. K. Crosstalk reduction for high-frequency linear-array ultrasound transducers pseudo-random pillars. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(10), 2312–2321 (2012)

    Article  Google Scholar 

  22. KIM, J. and TORQUATO, S. Multifunctional composites for elastic and electromagnetic wave propagation. Proceedings of the National Academy of Sciences of the United States of America, 117(16), 8764–8774 (2020)

    Article  Google Scholar 

  23. MYRSTUEN, L. E. Finite Element Modeling of Heat Generation in 1–3 Piezocomposite Transducers for Underwater Ultrasonic Applications, M. Sc. dissertation, Norwegian University of Science and Technology, Trondheim, 38–57 (2018)

    Google Scholar 

  24. WILLIS, J. R. Polarization approach to the scattering of elastic waves I, scattering by a single inclusion. Journal of the Mechanics and Physics of Solids, 28(5–6), 287–305 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. WILLIS, J. R. A polarization approach to the scattering of elastic waves II, multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28(5–6), 307–327 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. SABINA, F. J. and WILLIS, J. R. A simple self-consistent analysis of wave propagation in particulate composites. Wave Motion, 10(2), 127–142 (1988)

    Article  MATH  Google Scholar 

  27. SABINA, F. J., SMYSHLYAEV, V. P., and WILLIS, J. R. Self-consistent analysis of waves in a matrix-inclusion composite I, aligned spheroidal inclusions. Journal of the Mechanics and Physics of Solids, 41(10), 1573–1588 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. KANAUN, S. K. Elastic medium with random fields of inhomogeneities. Elastic Medium with Microstructure II, Springer-Verlag, Berlin, 165–228 (1983)

    Google Scholar 

  29. LEVIN, V. M., MICHELITSCH, T. M., and GAO, H. Propagation of electroacoustic waves in the transversely isotropic piezoelectric medium reinforced by randomly distributed cylindrical inhomogeneities. International Journal of Solids and Structures, 39(19), 5013–5051 (2002)

    Article  MATH  Google Scholar 

  30. LEVIN, V. M., VALDIVIEZO-MIJANGOS, O., and SABINA, F. J. Propagation of electroacoustic axial shear waves in a piezoelectric medium reinforced by continuous fibers. International Journal of Engineering Science, 49(11), 1232–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. CHEN, P. and SHEN, Y. Propagation of axial shear magneto-electro-elastic waves in piezoelectric-piezomagnetic composites with randomly distributed cylindrical inhomogeneities. International Journal of Solids and Structures, 44(5), 1511–1532 (2007)

    Article  MATH  Google Scholar 

  32. PEÚATE-RODRÍGUEZ, H. C., RODRÍGUEZ-RAMOS, R., RIVALTA-VALLADARES, M. C., and SABINA, F. J. Self-consistent analysis of waves in piezoelectric composites with multiple inclusions. 11th Pan-American Congress of Applied Mechanics, Brazilian Association of Engineering and Mechanical Sciences, Rio de Janeiro (2009)

    Google Scholar 

  33. ROYER, D. and DIEULESAINT, E. Elastic Waves in Solids I: Free and Guided Propagation, Springer, New York, 130 (2000)

    MATH  Google Scholar 

  34. HILL, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213–222 (1965)

    Article  MathSciNet  Google Scholar 

  35. KINRA, V. K. Dispersive wave propagation in random particulate composites. Recent Advances in Composites in the United States and Japan, American Society for Testing and Materials, Philadelphia, 309–325 (1985)

    Google Scholar 

  36. GREWE, M. G., GURURAJA, T. R., SHROUT, T. R., and NEWNHAM, R. E. Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37(6), 506–514 (1990)

    Article  Google Scholar 

  37. CHAN, H. L. W. and UNSWORTH, J. Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36(4), 434–441 (1989)

    Article  Google Scholar 

  38. GURURAJA, T. R., CROSS, L. E., NEWNHAM, R. E., AULD, B. A., WANG, Y. J., and SCHULZE, W. A. Piezoelectric composite materials for ultrasonic transducer applications, part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Transactions on Sonics and Ultrasonics, 32(4), 481–498 (1985)

    Article  Google Scholar 

  39. GURURAJA, T. R., CROSS, L. E., NEWNHAM, R. E., and SCHULZE, W. A. Piezoelectric composite materials for ultrasonic transducer applications, part II: evaluation of ultrasonic medical applications. IEEE Transactions on Sonics and Ultrasonics, 32(4), 499–513 (1985)

    Article  Google Scholar 

  40. BERLINCOURT, D. A., CURRAN, D. R., and JAFFE, H. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics, 1, 169–270 (1964)

    Article  Google Scholar 

Download references

Funding

Project supported by the National Natural Science Foundation of China (No. 12072240)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong** Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Wan, Y. Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities. Appl. Math. Mech.-Engl. Ed. 44, 525–546 (2023). https://doi.org/10.1007/s10483-023-2979-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2979-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation