Log in

The value of cultures to modern microbiology

  • Review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Since the late nineteenth century, pure cultures have been regarded as the cornerstone of bacteriology. However, not all bacteria will multiply sufficiently to produce visible colonies on solid media; some cells will produce micro-colonies that are invisible to the naked eye. Moreover, the proportion of culturable cells that produce visible growth will vary according to the species and the state of the cells—are they actively growing or comparatively inactive? The latter have a poorer rate of recovery in terms of cultivability. It is unclear whether or not an individual colony is always derived from a single cell; it is possible that organisms in close proximity to each other may multiply and come together to produce single colonies. Then, the resultant growth will most certainly be derived from more than one initial cell. Although it is generally assumed that streaking and re-streaking on fresh media will purify any culture, there is evidence for microbial consortia interacting to form what appear to be single pure cultures. As so-called pure cultures underpin traditional microbiology, it is relevant to understand that the culture does not necessarily contain clones of identical bacteria, but that there may be variation in the genetic potential of the component cells, i.e. the cells are not homogeneous. Certainly, many bacteria change rapidly upon culturing, with some becoming bigger and less active. It is difficult to be sure if these changes reflect a loss or change of DNA or whether standard culturing methods select faster growing cells that are effectively not representative of the environment from which they were derived. These concepts are reviewed with an emphasis on bacterial fish pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anacker RL, Ordal EJ (1959) Studies on the myxobacterium Chondrococcus columnaris. 1. Serological ty**. J Bacteriol 78:25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andree KR, Rodgers CJ, Furones D, Gisbert E (2013) Co-Infection with Pseudomonas anguilliseptica and Delftia acidovorans in the European eel, Anguilla anguilla (L.): a case history of an illegally trafficked protected species. J Fish Dis 36:647–656

    Article  CAS  PubMed  Google Scholar 

  • AOAC (1999) Microbiology guidelines; quantitative microbiological tests. 4. Linearity. J AOAC Int 82:409–410

    Google Scholar 

  • Austin B, Austin DA (2016) Bacterial fish pathogens: disease of farmed and wild fish, 6th edn. Springer, Dordrecht

    Book  Google Scholar 

  • Austin DA, Robertson PAW, Wallace DK, Daskalov H, Austin B (1998) Isolation of Aeromonas salmonicida in association with purple-pigmented bacteria in sediment from a Scottish loch. Lett Appl Microbiol 27:349–351

    Article  CAS  PubMed  Google Scholar 

  • Austin B, Pride AC, Rhodie GA (2003) Association of a bacteriophage with virulence in Vibrio harveyi. J Fish Dis 26:55–58

    Article  CAS  PubMed  Google Scholar 

  • Berditsch M, Afonin S, Ulrich AS (2007) The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Appl Environ Microbiol 73:6620–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1961) Milestones in microbiology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001) Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 revision). Int J System Evol Microbiol 51:2221–2225

    Article  CAS  Google Scholar 

  • Colwell RR (1993) Nonculturable but still viable and potentially pathogenic. Z Bakteriol 279:154–156

    Article  CAS  Google Scholar 

  • Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiol Open 5:901–922

    Article  Google Scholar 

  • Dong HT, Nguyen VV, Phiwsaiya K, Gangnonngiw W, Withyachumnarnkul B, Rodkhum C, Senapin S (2015) Concurrent infections of Flavobacterium columnare and Edwardsiella ictaluri in striped catfish, Pangasianodon hypophthalmus in Thailand. Aquaculture 448:142–150

    Article  CAS  Google Scholar 

  • Drancourt M, Raoult D (2005) Sequence-based identification of new bacteria: a proposition for creation of an orphan bacterium repository. J Clin Microbiol 43:4311–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelyn TPT (1977) An improved growth medium for the kidney bacterium and some notes on using the medium. Bull Off Int Epiz 87:511–513

    Google Scholar 

  • Fehr A, Walther E, Schmidt-Posthaus H, Nufer L, Wilson A, Svercel M, Richter D, Segner H, Pospischil A, Vaughan L (2013) Candidatus Syngnamydia Venezia, a novel member of the phylum Chlamydiae from the broad nosed pipefish, Syngnathus typhle. PLoS ONE. doi:10.1371/journal.pone.0070853

    Google Scholar 

  • Gardener S, Jones JG (1984) A new solidifying agent for culture media which liquefies on cooling. J Gen Microbiol 130:731–733

    CAS  Google Scholar 

  • Hirvelä-Koski V, Pohjanvirta T, Koski P, Sukura A (2006) Atypical growth of Renibacterium salmoninarum in subclinical infections. J Fish Dis 29:21–29

    Article  PubMed  Google Scholar 

  • Hjerde E, Karlsen C, Sørum H, Parkhill J, Willassen NP, Thomson NR (2015) Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genom. doi:10.1186/s12864-015-1669-z

    Google Scholar 

  • Jain R, Aniaiah V, Babbar SB (2005) Guar gum: a cheap substitute for agar in microbial culture media. Lett Appl Microbiol 41:345–349

    Article  CAS  PubMed  Google Scholar 

  • Janda JM, Abbott SL (2002) Bacterial identification for publication: when is enough enough? J Clin Microbiol 40:1887–1891

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A (2015) Bacterial colonies in solid media and foods: a review on their growth and interactions with the micro-environment. Front Microbiol. doi:10.3389/fmicb.2015.01284

    Google Scholar 

  • Jung J-H, Lee J-E (2016) Real-time bacterial microcolony counting using on-chip microscopy. Sci Rep. doi:10.1038/srep21473

    Google Scholar 

  • Koch R (1882) Die Aetiologie der Tuberculose. Berliner Klin Wochenschrift 19:221–223

    Google Scholar 

  • Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-driven gene loss in bacteria. PLoS Genet. doi:10.1371/journal.pgen.1002787

    PubMed  PubMed Central  Google Scholar 

  • Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. doi:10.3389/fmicb.2014.00258

    Google Scholar 

  • Lin CC, Casida LE (1984) GELRITE as a gelling agent in media for the growth of thermophilic micro-organisms. Appl Environ Microbiol 47:427–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA (2012) Brock biology of microorganisms, 13th edn. Boston, Benjamin Cummings

    Google Scholar 

  • Mallory LM, Austin B, Colwell RR (1977) Numerical taxonomy and ecology of oligotrophic bacteria isolated from the estuarine environment. Can J Microbiol 23:733–750

    Article  CAS  PubMed  Google Scholar 

  • McIntosh D, Austin D (1990) Recovery of cell-wall deficient forms (L-forms) of the fish pathogens Aeromonas salmonicida and Yersinia ruckeri. Syst. Appl Microbiol 13:378–381

    Article  Google Scholar 

  • Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  PubMed  Google Scholar 

  • Murphy JR (1966) Chapter 32 Corynebacterium diphtheriae. In: Baron S (ed) Medical microbiology, 4th edn. Uiversity of Texas, Galveston

    Google Scholar 

  • Mwaikono KS, Maina S, Sebastian A, Schilling M, Kapur V, Gwakisa P (2016) High-throughput sequencing of 16S rRNA gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol. doi:10.1186/s12866-016-0758-8

    PubMed  PubMed Central  Google Scholar 

  • Nascutiu AM (2010) Viable non-culturable bacteria. Bacteriol Virusol Parazitol Epidemiol 55:11–18 (in Romanian)

    PubMed  Google Scholar 

  • Nishioka T, Elsharkawy MM, Suga H, Kageyama K, Hyakumachi M, Shimizu M (2016) Development of culture medium for the isolation of Flavobacterium and Chryseobacterium from rhizosphere soil. Microb Environ 31:104–110

    Article  Google Scholar 

  • Oakey HJ, Owens L (2000) A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J Appl Microbiol 89:702–709

    Article  CAS  PubMed  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:45–424

    Article  Google Scholar 

  • Olson BH (1978) Enhanced accuracy of coliform testing in seawater by a modification of most-probable-number method. Appl Environ Microbiol 36:438–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattyn SR (1973) The problem of cultivation of Mycobacterium leprae: a review with criteria for evaluating recent experimental work. Bull Wld Hlth Org 49:403–410

    CAS  Google Scholar 

  • Pennisi E (2002) Evolutionary biology: bacteria share photosynthetic genes. Science (New York) 298:1538–1539

    Article  CAS  Google Scholar 

  • Petri RJ (1887) Eine kleine modification des Koch’schen Plattenverfahrens. Z Bakteriol Parasiten 1:279–280

    Google Scholar 

  • Pinto D, Santos MA, Chambel L (2015) Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit Rev Microbiol 41:61–76

    Article  PubMed  Google Scholar 

  • Prasad S, Morris PC, Hansen R, Meaden PG, Austin B (2005) A novel bacteriocin-like substance from a pathogenic strain of Vibrio harveyi. Microbiology 151:3051–3058

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Zhu M, Xu J (2014) First report of Shewanella sp and Listonella sp infection in freshwater cultured loach, Misgurnus anguillicaudatus. Aquacult Res 45:602–608

    Article  CAS  Google Scholar 

  • Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health. doi:10.3389/fpubh.2014.00103

    PubMed  PubMed Central  Google Scholar 

  • Rohde A, Hammerl JA, Appel B, Dieckmann R, Al Dahouk S (2015) FISHing for bacteria in food—a promising tool for the reliable detection of pathogenic bacteria? Food Microbiol 46:395–407

    Article  CAS  PubMed  Google Scholar 

  • Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtke LM, Carson J (1999) Induction, characterization and pathogenicity in rainbow trout Oncorhynchus mykiss (Walbaum) of Lactococcus garvieae L-forms. Vet Microbiol 69:287–300

    Article  CAS  PubMed  Google Scholar 

  • Scott SJ, Bollinger TK (2014) Flavobacterium columnare: an important contributing factor to fish die-offs in southern lakes of Saskatchewan, Canada. J Vet Diagn Invest 26:832–836

    Article  PubMed  Google Scholar 

  • Shungu D, Valiant M, Tutlane V, Weinberg E, Weissberger B, Koupal L, Gadebusch H, Stapley E (1983) GELRITE as an agar substitute in bacteriological media. Appl Environ Microbiol 46:840–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa OA, Gifford SM, Repeta DJ, DeLong EF (2015) High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J 9:2725–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowmya R, Sachindra NM (2016) Biochemical and molecular characterization of carotenogenic flavobacterial isolates from marine waters. Pol J Microbiol 65:77–88

    Article  PubMed  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl U, Cho JC, Foo W, Vergin KL, Lanoil B, Giovannoni SJ (2008) Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo dry valleys, Antarctica. Microb Ecol 55:395–405

    Article  CAS  PubMed  Google Scholar 

  • Stride MC, Polkinghorne A, Nowak BF (2014) Chlamydial infections of fish: diverse pathogens and emerging causes of disease in aquaculture species. Vet Microbiol 170:19–27

    Article  CAS  PubMed  Google Scholar 

  • To BCS, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62:576–578

    Article  CAS  Google Scholar 

  • Torrella F, Morita RY (1981) Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol 41:518–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf PW, Oliver JD (1992) Temperature effects on the viable but non-culturable state of Vibrio vulnificus. FEMS Microbiol Ecol 101:33–39

    Article  Google Scholar 

  • Xu H-S, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine-environment. Microb Ecol 8:313–323

    Article  CAS  PubMed  Google Scholar 

  • Yang S-J, Kang I, Cho J-C (2016) Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample. Microb Ecol 71:29–43

    Article  CAS  PubMed  Google Scholar 

  • Zamenhof S, Eichhorn HH (1967) Study of microbial evolution through loss of biosynthetic functions: establishment of “defective” mutants. Nature 216:456–458

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-H, Austin B (2000) Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis 23:93–102

    Article  Google Scholar 

  • Zhang X-H, Meaden PG, Austin B (2001) Duplication of hemolysin genes in a virulent isolate of Vibrio harveyi. Appl Environ Microbiol 67:3161–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-J, Yang W-M, Wu H, Gong X-N, Li A-H (2014) Multilocus sequence ty** revealed a clonal lineage of Aeromonas hydrophila caused motile Aeromonas septicemia outbreaks in pond-cultured cyprinid fish in an epidemic area in central China. Aquaculture 432:1–6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Austin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, B. The value of cultures to modern microbiology. Antonie van Leeuwenhoek 110, 1247–1256 (2017). https://doi.org/10.1007/s10482-017-0840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0840-8

Keywords

Navigation