Log in

Uncertainty and fluctuation in crude oil price: evidence from machine learning models

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study comprehensively investigates the predictability of uncertainty indices for oil market volatility, employing multiple machine learning models based on a large set of uncertainty indices. Empirical findings demonstrate the efficiency of machine learning models for predicting oil futures volatility using uncertainty indices. The results are consistent across various robustness checks and special circumstances. This study highlights the need to combine the efficiency of machine learning models with as much information from uncertainty indices as possible to capture the dynamics of the oil market, which is essential for energy fields to confront future fierce situations and crises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. More technical details can be found in Hansen et al. (2011).

  2. For more details, refer to https://www.nber.org/research/business-cycle-dating.

References

  • Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.

    Google Scholar 

  • Antonakakis, N., Gupta, R., Kollias, C., & Papadamou, S. (2017). Geopolitical risks and the oil-stock nexus over 1899–2016. Finance Research Letters, 23, 165–173.

    Article  Google Scholar 

  • Batten, J. A., Choudhury, T., Kinateder, H., & Wagner, N. F. (2022). Volatility impacts on the european banking sector: GFC and COVID-19. Annals of Operations Research, 2022, 1–26.

    Google Scholar 

  • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36(1), 105–139.

    Article  Google Scholar 

  • Bekiros, S., Gupta, R., & Paccagnini, A. (2015). Oil price forecastability and economic uncertainty. Economics Letters, 132, 125–128.

    Article  Google Scholar 

  • Benedetto, F., Mastroeni, L., Quaresima, G., & Vellucci, P. (2020). Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis. Energy Economics, 89, 104815.

    Article  Google Scholar 

  • Born, B., Breuer, S., & Elstner, S. (2018). Uncertainty and the great recession. Oxford Bulletin of Economics and Statistics, 80(5), 951–971.

    Article  Google Scholar 

  • Bourghelle, D., Jawadi, F., & Rozin, P. (2021). Oil price volatility in the context of Covid-19. International Economics, 167, 39–49.

    Article  Google Scholar 

  • Bouri, E., Demirer, R., Gupta, R., & Pierdzioch, C. (2020). Infectious diseases, market uncertainty and oil market volatility. Energies, 13(16), 4090.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

    Article  Google Scholar 

  • Brogaard, J., & Detzel, A. (2015). The asset-pricing implications of government economic policy uncertainty. Management Science, 61(1), 3–18.

    Article  Google Scholar 

  • Chatziantoniou, I., Degiannakis, S., Delis, P., & Filis, G. (2020). Forecasting oil price volatility using spillover effects from uncertainty indices. Finance Research Letters, 42, 101885.

    Article  Google Scholar 

  • Chen, J., Ewald, C., Ouyang, R., Westgaard, S., & **ao, X. (2022). Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: The case of Brent crude oil. Annals of Operations Research, 313(1), 29–46.

    Article  Google Scholar 

  • Choudhury, T., Kinateder, H., & Neupane, B. (2022). Gold, bonds, and epidemics: A safe haven study. Finance Research Letters, 48, 102978.

    Article  Google Scholar 

  • Clark, T. E., & West, K. D. (2007). Approximately normal tests for equal predictive accuracy in nested models. Journal of econometrics, 138(1), 291–311.

    Article  Google Scholar 

  • Ding, S., Zhang, Y., & Duygun, M. (2019). Modeling price volatility based on a genetic programming approach. British journal of management, 30(2), 328–340.

    Article  Google Scholar 

  • Dutta, A., Bouri, E., & Saeed, T. (2021). News-based equity market uncertainty and crude oil volatility. Energy, 222, 119930.

    Article  Google Scholar 

  • Duygun, M., Tunaru, R., & Vioto, D. (2021). Herding by corporates in the US and the Eurozone through different market conditions. Journal of International Money and Finance, 110, 102311.

    Article  Google Scholar 

  • Fameliti, S. P., & Skintzi, V. D. (2022). Statistical and economic performance of combination methods for forecasting crude oil price volatility. Applied Economics, 54(26), 3031–3054.

    Article  Google Scholar 

  • Fang, T., Su, Z., & Yin, L. (2020). Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility. International Review of Financial Analysis, 71, 101566.

    Article  Google Scholar 

  • Filippidis, M., Kizys, R., Filis, G., & Floros, C. (2019). The WTI/Brent oil futures price differential and the globalisation-regionalisation hypothesis. International Journal of Banking Accounting and Finance, 10(1), 3–38.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In icml, 96, 148–156.

    Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  Google Scholar 

  • Ftiti, Z., Tissaoui, K., & Boubaker, S. (2020). On the relationship between oil and gas markets: A new forecasting framework based on a machine learning approach. Annals of Operations Research, 313, 1–29.

    Google Scholar 

  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1), 3–42.

    Article  Google Scholar 

  • Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics, 81, 709–727.

    Article  Google Scholar 

  • Gu, S., Kelly, B., & **u, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.

    Article  Google Scholar 

  • Gupta, R., & Pierdzioch, C. (2022). Forecasting the realized variance of oil-price returns: A disaggregated analysis of the role of uncertainty and geopolitical risk. Environmental Science and Pollution Research, 29, 1–13.

    Article  Google Scholar 

  • Hailemariam, A., Smyth, R., & Zhang, X. (2019). Oil prices and economic policy uncertainty: Evidence from a nonparametric panel data model. Energy economics, 83, 40–51.

    Article  Google Scholar 

  • Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of political economy, 91(2), 228–248.

    Article  Google Scholar 

  • Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.

    Article  Google Scholar 

  • Hassan, M. K., Djajadikerta, H. G., Choudhury, T., & Kamran, M. (2021). Safe havens in islamic financial markets: COVID-19 versus GFC. Global Finance Journal, 54, 100643.

    Article  Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Huang, D., Jiang, F., Li, K., Tong, G., & Zhou, G. (2022). Scaled PCA: A new approach to dimension reduction. Management Science, 68(3), 1678–1695.

    Article  Google Scholar 

  • Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3), 1177–1216.

    Article  Google Scholar 

  • Karnizova, L., & Li, J. C. (2014). Economic policy uncertainty, financial markets and probability of US recessions. Economics Letters, 125(2), 261–265.

    Article  Google Scholar 

  • Khalfaoui, R., Solarin, S. A., Al-Qadasi, A., & Ben Jabeur, S. (2022). Dynamic causality interplay from COVID-19 pandemic to oil price, stock market, and economic policy uncertainty: Evidence from oil-importing and oil-exporting countries. Annals of Operations Research, 313, 1–39.

    Article  Google Scholar 

  • LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541–551.

    Article  Google Scholar 

  • Lewenstein, M., & Nowak, A. (1989). Fully connected neural networks with self-control of noise levels. Physical Review Letters, 62(2), 225–228.

    Article  Google Scholar 

  • Li, X., Wei, Y., Chen, X., Ma, F., Liang, C., & Chen, W. (2020). Which uncertainty is powerful to forecast crude oil market volatility? New evidence. International Journal of Finance & Economics. https://doi.org/10.1002/ijfe.2371.

    Article  Google Scholar 

  • Liang, C., Wei, Y., Li, X., Zhang, X., & Zhang, Y. (2020). Uncertainty and crude oil market volatility: New evidence. Applied Economics, 52(27), 2945–2959.

    Article  Google Scholar 

  • Liang, C., Liao, Y., Ma, F., & Zhu, B. (2021). United States Oil Fund volatility prediction: The roles of leverage effect and jumps. Empirical Economics, 62, 1–24.

    Google Scholar 

  • Liu, J., Ma, F., Tang, Y., & Zhang, Y. (2019). Geopolitical risk and oil volatility: A new insight. Energy Economics, 84, 104548.

    Article  Google Scholar 

  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303.

  • Lu, X., Ma, F., Wang, J., & Zhu, B. (2021). Oil shocks and stock market volatility: New evidence. Energy Economics, 103, 105567.

    Article  Google Scholar 

  • Ludvigson, S. C., Ma, S., & Ng, S. (2021). Uncertainty and business cycles: Exogenous impulse or endogenous response? American Economic Journal: Macroeconomics, 13(4), 369–410.

    Google Scholar 

  • Ma, F., Zhang, Y., Huang, D., & Lai, X. (2018). Forecasting oil futures price volatility: New evidence from realized range-based volatility. Energy Economics, 75, 400–409.

    Article  Google Scholar 

  • Ma, F., Liao, Y., Zhang, Y., & Cao, Y. (2019). Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks. Journal of Empirical Finance, 52, 40–55.

    Article  Google Scholar 

  • Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting the equity risk premium: The role of technical indicators. Management science, 60(7), 1772–1791.

    Article  Google Scholar 

  • Neves, E., Oliveira, V., Leite, J., & Henriques, C. (2021). The global business cycle and speculative demand for crude oil. China Finance Review International. https://doi.org/10.1108/CFRI-05-2021-0091.

    Article  Google Scholar 

  • Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246–256.

    Article  Google Scholar 

  • Paye, B. S. (2012). Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. Journal of Financial Economics, 106(3), 527–546.

    Article  Google Scholar 

  • Qin, M., Su, C. W., Hao, L. N., & Tao, R. (2020). The stability of US economic policy: Does it really matter for oil price? Energy, 198, 117315.

    Article  Google Scholar 

  • Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. The Review of Financial Studies, 23(2), 821–862.

    Article  Google Scholar 

  • Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496.

    Article  Google Scholar 

  • Sovacool, B. K., Rio, D., D. F., & Griffiths, S. (2020). Contextualizing the Covid-19 pandemic for a carbon-constrained world: Insights for sustainability transitions, energy justice, and research methodology. Energy Research & Social Science, 68, 101701.

    Article  Google Scholar 

  • Su, Z., Lu, M., & Yin, L. (2018). Oil prices and news-based uncertainty: Novel evidence. Energy Economics, 72, 331–340.

    Article  Google Scholar 

  • Szczygielski, J., Charteris, A., Bwanya, P., & Brzeszczyński, J. (2021). The impact and role of COVID-19 uncertainty: A global industry analysis. International Review of Financial Analysis, 80, 101837–101837.

    Article  Google Scholar 

  • Tang, Y., **ao, X., Wahab, M. I. M., & Ma, F. (2021). The role of oil futures intraday information on predicting US stock market volatility. Journal of Management Science and Engineering, 6(1), 64–74.

    Article  Google Scholar 

  • Tiwari, A. K., Aye, G. C., Gupta, R., & Gkillas, K. (2020). Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model. Energy Economics, 88, 104748.

    Article  Google Scholar 

  • Vapnik, V. (1998). Statistical learning theory new york. NY: Wiley, 1(2), 3.

    Google Scholar 

  • Wang, Y., Pan, Z., & Wu, C. (2016). Time-varying parameter realized volatility models. Journal of Forecasting, 36(5), 566–580.

    Article  Google Scholar 

  • Wang, J., Lu, X., He, F., & Ma, F. (2020). Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU? International Review of Financial Analysis, 72, 101596.

    Article  Google Scholar 

  • Wang, J., He, X., Ma, F., & Li, P. (2022). Uncertainty and oil volatility: Evidence from shrinkage method. Resources Policy, 75, 102482.

    Article  Google Scholar 

  • Wei, Y., Liu, J., Lai, X., & Hu, Y. (2017). Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty? Energy Economics, 68, 141–150.

    Article  Google Scholar 

  • Wen, F., Zhao, Y., Zhang, M., & Hu, C. (2019). Forecasting realized volatility of crude oil futures with equity market uncertainty. Applied Economics, 51(59), 6411–6427.

    Article  Google Scholar 

  • Wen, F., Liu, Z., Dai, Z., He, S., & Liu, W. (2022). Multi-scale risk contagion among international oil market, chinese commodity market and chinese stock market: A MODWT-Vine quantile regression approach. Energy Economics, 109, 105957.

    Article  Google Scholar 

  • Weng, F., Zhang, H., & Yang, C. (2021). Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic. Resources Policy, 73, 102148.

    Article  Google Scholar 

  • Yeh, C. H. (1991). Classification and regression trees (CART). Chemometrics and Intelligent Laboratory Systems. Proceedings of COBAC V Computer Based Analytical Chemistry, 12, 95–96.

    Google Scholar 

  • Zhang, Y., Ma, F., & Wang, Y. (2019). Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? Journal of Empirical Finance, 54, 97–117.

    Article  Google Scholar 

  • Zheng, C., & Zhang, J. (2021). The impact of COVID-19 on the efficiency of microfinance institutions. International Review of Economics & Finance, 71, 407–423.

    Article  Google Scholar 

  • Zhu, N., Zhu, C., & Emrouznejad, A. (2020). A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of chinese manufacturing listed companies. Journal of Management Science and Engineering. https://doi.org/10.1016/j.jmse.2020.10.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FM: Methodology, software, investigation, and writing—original draft; XL: Data curation, methodology, software, project administration, and funding acquisition; BZ: Methodology, software, formal analysis, investigation, and writing—review & editing.

Corresponding author

Correspondence to Bo Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Lu, X. & Zhu, B. Uncertainty and fluctuation in crude oil price: evidence from machine learning models. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05463-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05463-7

Keywords

Navigation