Log in

A compact low-power algorithmic A/D converter implemented on a large scale FPAA chip

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an impact and low power algorithmic ADC which is implemented on a large scale field programmable analog array chip. The proposed circuit is merely composed of the elements within a single computational analog block (CAB) to minimize the area and parasitic effects. The feedback residue is amplified by a simple operational transconductance amplifier with a gain of \(-\,2\). Therefore, a new algorithm for the conversion process is proposed for this negative gain structure. Furthermore, owing to the floating-gate technique adopted in this work, the parameters and routes of the ADC achieve exceptional reconfigurability. The offset, reset, reference, threshold voltages, and gain all can be adjusted for optimizing the ADC performance. The measured results of the DNL is + 2/− 1 LSB and the INL is + 1.8/− 1.4 LSB, respectively. Under an 8-bit resolution and a 62.5 Hz sampling frequency condition, the measured effective number of bit is 7.6 bits. The total current consumption of the OTAs and FGOTAs is \(1.6\,\upmu\)A under a 2.5 V supply voltage. Each CAB which includes all components, switches, and routings occupies an area of \(400 \times 500\,{\mathrm{mm}}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nairn, D. G., & Salama, C. A. T. (1990). Current-mode algorithmic analog-to-digital converters. IEEE Journal of Solid-State Circuits, 25(4), 997–1004.

    Article  Google Scholar 

  2. Jarvinen, J. A. M., Saukoski, M., & Halonen, K. A. I. (2008). A 12-bit ratio-independent algorithmic A/D converter for a capacitive sensor interface. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(3), 730–740.

    Article  MathSciNet  Google Scholar 

  3. Li, P.-W., Chin, M., Gray, P., & Castello, R. (1984). A ratio-independent algorithmic analog-to-digital conversion technique. IEEE Journal of Solid-State Circuits, 19(6), 828–836.

    Article  Google Scholar 

  4. Lu, C.-C. (2011). A 1.5V IO-bit 5 MS/s CMOS algorithmic ADC. International Congress on Image and Signal Processing (CISP), 4(1), 2146–2149.

    Google Scholar 

  5. George, S., Kim, S., Shah, S., Hasler, J., Collins, M., Adil, F., et al. (2016). A programmable and configurable mixed-mode FPAA SoC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(6), 2253–2261.

    Google Scholar 

  6. Peng, S. -Y., Gurun, G., Twigg, C. M., Qureshi, M. S., Basu, A., Brink, S., Hasler, P. E., & Degertekin F. L. (2009). A large-scale reconfigurable smart sensory chip. In IEEE international symposium on circuits and systems (pp. 2145–2148).

  7. Ma, Y., Gilliland, T. G., Wang, B., Paulsen, R., Pesavento, A., Wang, C.-H., et al. (2004). Reliability of PFET EEPROM with 70-åtunnel oxide manufactured in generic logic CMOS processes. IEEE Transactions on Device and Materials Reliability, 4(3), 353–358.

    Article  Google Scholar 

  8. Monk, T. A., Hurst, P. J., & Lewis, S. H. (2016). Iterative gain enhancement in an algorithmic ADC. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(3), 459–469.

    Article  MathSciNet  Google Scholar 

  9. Peng, S.-Y., Qureshi, M. S., Hasler, P. E., Basu, A., & Degertekin, F. L. (2008). A charge-based low-power high-SNR capacitive sensing interface circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 1863–1872.

    Article  MathSciNet  Google Scholar 

  10. Geelen, G. (2001). A 6 b 1.1 GSample/s CMOS A/D converter. In IEEE international solid-state circuits conference (pp. 128–129).

  11. Erdogan, O. E., Hurst, P. J., & Lewis, S. H. (1999). A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD. IEEE Journal of Solid-State Circuits, 34(12), 1812–1820.

    Article  Google Scholar 

  12. Kim, M. G., Hanumolu, P. K., & Moon, U.-K. (2009). A 10 MS/s 11-bit 0.19 \({\rm mm}^2\) algorithmic ADC with improved clocking scheme. IEEE Journal of Solid-State Circuits, 44(9), 2348–2355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Peng, SY. & Hasler, J. A compact low-power algorithmic A/D converter implemented on a large scale FPAA chip. Analog Integr Circ Sig Process 94, 65–74 (2018). https://doi.org/10.1007/s10470-017-1084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1084-2

Keywords

Navigation