Log in

Simplification of the structure and diversity of cocoa agroforests does not increase yield nor influence frosty pod rot in El Soconusco, Chiapas, Mexico

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Cocoa is traditionally grown in agroforestry systems (AFS). It is essential to the household and regional economy and plays an important role in natural resource and environmental services conservation. In recent years, the vegetation structure and diversity of cocoa AFS throughout the world are being simplified as farmers consider that the removal of trees helps to increase yields and reduce disease incidence. However, debate exists on the relationship between tree shade and diversity and cocoa yields and the incidence of disease such as frosty pod rot, one of the most important fungal infections in cocoa cultivation. The objective of this study was to analyze changes in agroforestry structure, plant species diversity, uses, yields, the incidence of frosty pod rot disease in cocoa agroforestry systems, and discuss the consequences of the simplification of this particular AFS in the municipality of Acacoyagua, Chiapas, Mexico. Inventories were carried out in 27 plots. Interviews were applied to families to assess ecological, technical, and productive variables. Incidence of frosty pod rot disease and yields were estimated on-farm and through interviews over a period of 3 years. Multivariate cluster analysis, Pearson correlation analysis, the Levene test for equality of variances and a non-parametric U Mann–Whitney test were carried out. Three types of cocoa agroforests were identified as a result of a structure simplification: (1) traditional cocoa polyculture; (2) cocoa with Legumes Inga spp and Lonchocarpus spp.; and (3) cocoa with diverse, scattered, predominantly wild trees. Fifty species were recorded in shade vegetation, with a diversity index of 3.15. Simplification in tree structure did not have a significant effect on cocoa yield nor on the incidence of frosty pod rot disease. On the contrary, it resulted in a decrease in plant diversity and provisioning of food and other products. Farmers undertake few agricultural practices; some practices are eventually carried out, such as the pruning of cocoa trees and shade-trees, removal, and burial of diseased fruits, and weeding. Seven out of 27 plots sampled yielded more than 300 kg ha−1, and one plot attained a yield of 437.5 kg ha−1; however, yields averaged 155.8 kg ha−1 and incidence of frosty pot rot averaged 9.6%, regardless of AFS type. These results highlight the importance of improving AFS management which in this case appears to be the most critical factor for attaining an increase in yields. Low levels of production and the incidence of frosty pod rot subsequently reduces farmers’ motivation to continue cultivating cocoa, placing the crop at risk and increasing the possibility of a change in the land-use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data base is available to editors and reviewers.

References

  • Andres C, Comoé H, Beerli A, Schneider M, Rist S, Jacobi J (2016) Cocoa in monoculture and dynamic agroforestry. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, New York, pp 121–153

    Google Scholar 

  • Anglaaere L, Cobbina J, Sinclair FL, McDonald MA (2011) The effect of land-use systems on tree diversity: farmer preference and species composition of cocoa-based agroecosystems in Ghana. Agrofor Syst 81:249–265

    Google Scholar 

  • Armengot L, Ferrari L, Milz J, Velásquez F, Hohmann P, Schneider M (2020) Cacao agroforestry systems do not increase pest and disease incidence compared with monocultures under good cultural management practices. Crop Prot 130:1–9

    Google Scholar 

  • Asare R, Markussen B, Asare RA, AnimKwapong G, Ræbild A (2019) On-farm cocoa yields increase with canopy cover of shade trees in two agro-ecological zones in Ghana. Climate Dev 11(5):435–445

    Google Scholar 

  • Asman A, Baharuddin A, Rosmana A, Ariska A (2020) Diversity of fungal community associated with cacao (Theobromae cacao L.) top clones from Salawesi, Indonesia. IOP Conf Ser Earth Environ Sci 486:012171

    Google Scholar 

  • Benítez M, Soto-Pinto L, Estrada-Lugo E, Pat-Fernández L (2020) Huertos familiares y alimentación de grupos domésticos cafetaleros en la Sierra Madre de Chiapas. Revista Agricultura Sociedad y Desarrollo 17:27–56

    Google Scholar 

  • Bisseleua DHB, Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS One 8(3):1–9

    Google Scholar 

  • Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981

    Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. PNAS 108(20):8311–8316

    CAS  PubMed  Google Scholar 

  • Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry system in Talamanca, Costa Rica. Agr Ecosyst Environ 149:181–188

    Google Scholar 

  • Díaz-José J, Díaz-José O, Mora-Flores S, Rendón-Medel R, Tellez-Delgado R (2014) Cacao in Mexico: restrictive factors and productivity levels. Chil J Agric Res 74(4):397–403

    Google Scholar 

  • Flores García JL, Soto Pinto L, Tinoco Rueda JA, Castillo Santiago MA (2019) Oportunidad para diversificar las zonas cafetaleras de la Sierra Mariscal de Chiapas ante el cambio climático. In: Bello BE, Soto Pinto L, Huerta PG, Gómez RJ (eds) Caminar el cafetal. Perspectivas socioambientales del café y su gente, El Colegio de la Frontera Sur y Juan Pablos Editores, México, pp 238–261

    Google Scholar 

  • Franzen M, Mulder BM (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodiv Conserv 16:3835–3849

    Google Scholar 

  • Gasco J (2018) Anthropogenic landscapes of Soconusco, past and present. In: Alexander RT, Kepecs S (eds) Colonial and postcolonial change in Mesoamerica: Archaeology as historical and Anthropology. University of New Mexico, Albuquerque, pp 205–226

    Google Scholar 

  • Gidoin C, Avelino J, Deheuvels O, Cilas C, Ngo Bieng MA (2014) Shade tree spatial structure and pod production explain frosty pod rot intensity in cacao agroforests, Costa Rica. Phytopathology 104:275–281

    PubMed  Google Scholar 

  • Greenberg R (2008) Biodiversity in the cacao agroecosystem: shade management and landscape considerations. Smithsonian Migratory Bird Center, Washington

    Google Scholar 

  • Guimarães RBA, Damásio PS, Corrêa MM (2017) Heterogeneidade na estrutura e diversidade de árvores de cabrucas no centro-sul do Estado da Bahia. Brasil. Hoehnea 44(2):184–192

    Google Scholar 

  • Hernandez GE, Hernandez MJ, Avendaño ACH, Lopez GG, Garrido RER, Romero NJ, Nava DC (2015) Socioeconomic and parasitological factors that limits cocoa production in Chiapas, Mexico. Revista Mexicana de Fitopatología 33:232–246

    Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2016) Conjunto de datos vectoriales del suelo y vegetación. Escala 1:250 000. Serie VI. Capa Unión. http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359. Consultado 20 de enero de 2018

  • Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132

    Google Scholar 

  • Jezeer RE, Verweij PA, Santos MJ, Boot RGA (2017) Shaded coffee and cocoa-double dividend for biodiversity and small-scale farmers. Ecol Econ 140:136–145

    Google Scholar 

  • Jurjonas M, Crossman K, Solomon J, López Baez W (2016) Potential links between certified organic cofee and deforestation in a protected area in Chiapas, Mexico. World Dev 78:13–21

    Google Scholar 

  • Kazianga H, Masters WA (2006) Property rights, production technology, and deforestation: cocoa in Cameroon. Agric Econ 35(1):19–26

    Google Scholar 

  • Krauss U, Soberanis W (2001) Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agrofor Syst 53(2):179–184

    Google Scholar 

  • Läderach P, Ramirez VJ, Navarro RCE, Zelaya MC, Martinez VA, Jarvis A (2019) Replication Data for: Climate change adaptation of coffee production in space and time, https://doi.org/10.7910/DVN/TSUPE1, Harvard Dataverse, V1

  • López A, Alemán T, Pérez MA, Farrera O (2010) Inventario Florístico y estructura de la vegetación en fragmentos de bosque del municipio de Acacoyagua, Chiapas. México. Lacandonia 4(2):5–21

    Google Scholar 

  • Matuda E (1950) A contribution to our knowledge of wild flora of Mt. Ovando. The American Midland Naturalist 43(1):195–223

    Google Scholar 

  • Medina-Fernandez BY, Muñoz-Astaíza CY, Haggar J, Aguilar RM (2006) Metodología para la evaluación de servicios ambientales. Anacafé, Guatemala and Foreign and Commonwealth Office, London

    Google Scholar 

  • Ngo Bieng MA, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14(4):329–336

    Google Scholar 

  • Nunoo I, Owusu V (2017) Comparative analyses on financial viability of cocoa agroforestry systems in Ghana. Environ Dev Sustain 19(1):83–98

    Google Scholar 

  • Ochoa Fonseca LE, Ramírez González SI, López Báez O (2015) Efecto de preparados minerales sobre el crecimiento y desarrollo in vitro de Moniliophthora roreri (Cif & Par) Evans. Revista Mexicana de Ciencias Agrícolas 6(5):1065–1075

    Google Scholar 

  • Peña-López JL (2019) Propagation of cocoa plants by grafting. Kuxulkab 25(51):33–40

    Google Scholar 

  • Rajpaul-Maguire VA, Khatun K, Hirons MA (2020) Agricultural information’s impact on the adaptive capacity of Ghana’s smallholder cocoa farmers. Front Sustain Food Syst 4:28. https://doi.org/10.3389/fsufs.2020.00028

    Article  Google Scholar 

  • Ramírez GS (2008) La moniliasis un desafío para lograr la sostenibilidad del sistema cacao en México. Tecnología en Marcha 21(1):97–110

    Google Scholar 

  • Ramírez-Meneses A, García-López E, Obrador-Olán JJ, Ruiz-Rosado O, Camacho-Chiu W (2013) Diversidad florística en plantaciones agroforestales de cacao en Cárdenas, Tabasco. México. Universidad y Ciencia Trópico Húmedo 29(3):215–230

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Google Scholar 

  • Riedel J, Kägi N, Armengot L, Schneider M (2019) Effects of rehabilitation pruning and agroforestry on cacao tree development and yield in an older full-sun plantation. Exp Agric 55(6):849–865

    Google Scholar 

  • Salazar OV, Ramos-Martín J, Lomas PL (2018) Livelihood sustainability assessment of coffee and cocoa producers in the Amazon region of Ecuador using household types. Journal of Rural Studies 62:1–9

    Google Scholar 

  • Salgado-Mora MG, Ibarra-Núñez G, Macías-Sámano JE, López-Báez O (2007) Diversidad arbórea en cacaotales del Soconusco, Chiapas, México. Interciencia 32:763–768

    Google Scholar 

  • Sambuichi RHR (2002) Fitosociologia e diversidade de espécies arbóreas em cabruca (mata atlântica raleada sobre plantação de cacau) na região sul Da bahia. Brasil. Acta Botanica Brasilica 16(1):89–101

    Google Scholar 

  • Schensul S, Schensul JJ, LeCompte MD (1999) Essential ethnographic methods: Observations, interviews and questionnaires. AltaMira Press, USA

    Google Scholar 

  • Schroth G, Harvey C (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16:2237–2244

    Google Scholar 

  • Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L (2016) Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaptation. Sci Total Environ 556:231–241

    CAS  PubMed  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Dávila H, Espin T, Mavisoy H, Ávila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agr Ecosyst Environ 173(1):46–57

    Google Scholar 

  • Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: theobroma cacao–Cordia alliodora in Central America. Agrofor Syst 88:1001–1019

    Google Scholar 

  • Sonwa DJ, Weise SF, Schroth G, Janssens MJ, Shapiro HY (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa, effects of markets and household needs. Agrofor Syst 88:1021–1034

    Google Scholar 

  • Soto-Pinto L (2019) Entre el dilema de producir café y mantener los beneficios socioambientales del cafetal. In: Bello BE, Soto Pinto L, Huerta PG, Gómez RJ (eds) Caminar el cafetal. Perspectivas socioambientales del café y su gente, El Colegio de la Frontera Sur, Juan Pablos Editores, México, pp 239–251

    Google Scholar 

  • Tondoh JE, N’guessan F, Martinez A, Sey B, Wowo A, Gnessougou N (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Global Ecology and Conservation 3:575–595

    Google Scholar 

  • Torres de la Cruz M, Ortiz García CF, Téliz Ortiz D, Mora Aguilera A, Nava Díaz C (2011) Temporal progress and integrated management of frosty pod rot (Moniliophthora roreri) of cocoa in Tabasco. Mexico, Journal of Plant Pathology 93(1):31–36

    Google Scholar 

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956

    Google Scholar 

  • Vebrova H, Lojka B, Husband TP, Chuspe ME, Van Damme P, Rollo A, Kalousova M (2014) Tree diversity in cacao agroforests in San Alejandro, Peruvian Amazon. Agrofor Syst 88:1101–1115

    Google Scholar 

  • Waha K, van Wijk MT, Fritz S, See L, Thornton PK, Wichern J, Herrero M (2018) Agricultural diversification as an important strategy for achieving food security in Africa. Glob Change Biol 24(8):3390–3400

    Google Scholar 

  • Wemheuer F, Berkelmann D, Wemheuer B, Daniel R, Vidal S, Bisseleua Daghela HB (2020) Agroforestry Management Systems Drive the Composition, Diversity, and Function of Fungal and Bacterial Endophyte Communities in Theobroma Cacao Leaves. Microorganisms 8(405):1–24

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the cocoa-farmer families in Acacoyagua who participated in this study; the financial support for this research came from public funds through The College of the Southern Border in Mexico (El Colegio de la Frontera Sur, ECOSUR, Mexico); we are also grateful to Ann Greenberg and Julian Flavell for hel** in reviewing the manuscript translation, and to the anonymous Journal reviewers.

Funding

This research was carried out by authors from the El Colegio de la Frontera Sur (The College of the Southern Border) a federal research center in Mexico, it was supported by public funds from Consejo Nacional de Ciencia y Tecnología (CONACYT).

Author information

Authors and Affiliations

Authors

Contributions

ALC designed and implemented the research, fieldwork, database, analysis, synthesis and discussion of results. LSP designed and implemented the research, fieldwork, database management, statistical analysis, synthesis and discussion of results, corrected and translated the manuscript. MSM participated in designing the research, discussion and the reviewing process. GH participated in discussion and the reviewing process.

Corresponding author

Correspondence to Lorena Soto-Pinto.

Ethics declarations

Conflicts of interest

We, the authors do not have any conflict of interest nor competing interests. Our only interest is to generate knowledge concerning agroforestry systems and make it known to the general public, technical and research institutions, as a scientific contribution of for different applications.

Consent to participate

All participant farmers and community authorities consented their participation at the beginning of the research work.

Consent for publication

Each co-authors of this manuscript consented to co-authorship.

Ethics approval

We always obtained permission from all the people who participated in this investigation. The names of the people who offered information and allowed us undertake research in their plots were omitted to avoid any conflict of interest of the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Cruz, A., Soto-Pinto, L., Salgado-Mora, M.G. et al. Simplification of the structure and diversity of cocoa agroforests does not increase yield nor influence frosty pod rot in El Soconusco, Chiapas, Mexico. Agroforest Syst 95, 201–214 (2021). https://doi.org/10.1007/s10457-020-00574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-020-00574-7

Keywords

Navigation