Log in

Angio-3, a 10-residue peptide derived from human plasminogen kringle 3, suppresses tumor growth in mice via impeding both angiogenesis and vascular permeability

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Anti-angiogenesis therapy is an established therapeutic strategy for cancer. The endogenous angiogenic inhibitor angiostatin contains the first 3–4 kringle domains of plasminogen and inhibits both angiogenesis and vascular permeability. We present here a 10-residue peptide, Angio-3, derived from plasminogen kringle 3, which retains the functions of angiostatin in inhibiting both angiogenesis and vascular permeability. NMR studies indicate that Angio-3 holds a solution structure similar to the corresponding region of kringle 3. Mechanistically, Angio-3 inhibited both VEGF- and bFGF-induced angiogenesis by inhibiting EC proliferation and migration while inducing apoptosis. Inhibition of VEGF-induced vascular permeability results from its ability to impede VEGF-induced dissociation of adherens junction and tight junction proteins as well as the formation of actin stress fibers. When administered intravenously, Angio-3 inhibited subcutaneous breast cancer and melanoma growth by suppressing both tumor angiogenesis and intra-tumor vascular permeability. Hence, Angio-3 is a novel dual inhibitor of angiogenesis and vascular permeability. It is valuable as a lead peptide that can be further developed as therapeutics for diseases involving excessive angiogenesis and/or vascular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EC:

Endothelial cell

VEGF:

Vascular endothelial growth factor

NMR:

Nuclear magnetic resonance

K5:

Kringle 5

VP:

Vascular permeability

HUVECs:

Human umbilical vein endothelial cells

HMVECs:

Human dermal microvascular endothelial cells

HRECs:

Human retinal endothelial cells

bFGF:

Basic fibroblast growth factor

References

  1. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. https://doi.org/10.1038/386671a0

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kumar S, Rao N, Venugopal S, Ge R (2012) Endogenous angiogenesis inhibitors: is the list ever ending. In: Berhradt LV (ed) Advances in medicine and biology, vol 38. Nova Science Publishers, New York, pp 1–48

    Google Scholar 

  4. Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17(3):471–494. https://doi.org/10.1007/s10456-014-9420-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lu H, Dhanabal M, Volk R, Waterman MJ, Ramchandran R, Knebelmann B, Segal M, Sukhatme VP (1999) Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 258(3):668–673. https://doi.org/10.1006/bbrc.1999.0612

    Article  PubMed  CAS  Google Scholar 

  6. Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, McCance SG, O’Reilly MS, Llinas M, Folkman J (1996) Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 271(46):29461–29467

    Article  PubMed  CAS  Google Scholar 

  7. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  8. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, Pepper MS (1998) Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92(12):4730–4741

    PubMed  CAS  Google Scholar 

  9. Cao Y, Cao R, Veitonmaki N (2002) Kringle structures and antiangiogenesis. Curr Med Chem Anticancer Agents 2(6):667–681

    Article  PubMed  CAS  Google Scholar 

  10. O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2(6):689–692

    Article  PubMed  Google Scholar 

  11. Ji WR, Barrientos LG, Llinas M, Gray H, Villarreal X, DeFord ME, Castellino FJ, Kramer RA, Trail PA (1998) Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 247(2):414–419. https://doi.org/10.1006/bbrc.1998.8825

    Article  PubMed  CAS  Google Scholar 

  12. Li L, Yao Y-C, Gu X-Q, Che D, Ma C-Q, Dai Z-Y, Li C, Zhou T, Cai W-B, Yang Z-H (2014) Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J Biol Chem 289(47):32628–32638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sima J, Ma J, Zhang SX, Guo J (2006) Study of the influence of angiostatin intravitreal injection on vascular leakage in retina and iris of the experimental diabetic rats. Yan Ke Xue Bao 22(4):252–258

    PubMed  CAS  Google Scholar 

  14. Sima J, Zhang SX, Shao C, Fant J, Ma JX (2004) The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett 564(1–2):19–23. https://doi.org/10.1016/S0014-5793(04)00297-2

    Article  PubMed  CAS  Google Scholar 

  15. Spranger J, Hammes HP, Preissner KT, Schatz H, Pfeiffer AF (2000) Release of the angiogenesis inhibitor angiostatin in patients with proliferative diabetic retinopathy: association with retinal photocoagulation. Diabetologia 43(11):1404–1407. https://doi.org/10.1007/s001250051546

    Article  PubMed  CAS  Google Scholar 

  16. Zhang SX, Sima J, Shao C, Fant J, Chen Y, Rohrer B, Gao G, Ma JX (2004) Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia 47(1):124–131. https://doi.org/10.1007/s00125-003-1276-4

    Article  PubMed  CAS  Google Scholar 

  17. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7(10):803–815. https://doi.org/10.1038/nri2171

    Article  PubMed  CAS  Google Scholar 

  18. Couffinhal T, Kearney M, Witzenbichler B, Chen D, Murohara T, Losordo DW, Symes J, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol 150(5):1673–1685

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Joe YA, Hong YK, Chung DS, Yang YJ, Kang JK, Lee YS, Chang SI, You WK, Lee H, Chung SI (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1–3. Int J Cancer 82 (5):694–699

    Article  PubMed  CAS  Google Scholar 

  20. Yang X, Cai W, Xu Z, Chen J, Li C, Liu S, Yang Z, Pan Q, Li M, Ma J, Gao G (2010) High efficacy and minimal peptide required for the anti-angiogenic and anti-hepatocarcinoma activities of plasminogen K5. J Cell Mol Med 14(10):2519–2530. https://doi.org/10.1111/j.1582-4934.2009.01004.x

    Article  PubMed  CAS  Google Scholar 

  21. Kini RM, Evans HJ (1995) A hypothetical structural role for proline residues in the flanking segments of protein-protein interaction sites. Biochem Biophys Res Commun 212(3):1115–1124. https://doi.org/10.1006/bbrc.1995.2084

    Article  PubMed  CAS  Google Scholar 

  22. Kini RM, Caldwell RA, Wu QY, Baumgarten CM, Feher JJ, Evans HJ (1998) Flanking proline residues identify the L-type Ca2 + channel binding site of calciseptine and FS2. Biochemistry 37(25):9058–9063. https://doi.org/10.1021/bi9802723

    Article  PubMed  CAS  Google Scholar 

  23. Kini RM, Evans HJ (1996) Prediction of potential protein-protein interaction sites from amino acid sequence. Identification of a fibrin polymerization site. FEBS Lett 385(1–2):81–86

    Article  PubMed  CAS  Google Scholar 

  24. Wickstrom SA, Alitalo K, Keski-Oja J (2004) An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. J Biol Chem 279(19):20178–20185. https://doi.org/10.1074/jbc.M312921200

    Article  PubMed  CAS  Google Scholar 

  25. Venugopal S, Chen M, Liao W, Er SY, Wong WS, Ge R (2015) Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation. Cardiovasc Res 107(1):131–142. https://doi.org/10.1093/cvr/cvv142

    Article  PubMed  CAS  Google Scholar 

  26. Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118(2):228–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Braunschweiler L, Ernst R (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53(3):521–528

    CAS  Google Scholar 

  28. Shaka A, Lee C, Pines A (1988) Iterative schemes for bilinear operators; application to spin decoupling. J Magn Reson 77(2):274–293

    Google Scholar 

  29. Goddard T, Kneller D (2008) SPARKY. University of California, San Francisco

    Google Scholar 

  30. Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  31. DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos

    Google Scholar 

  32. Mulichak AM, Tulinsky A, Ravichandran KG (1991) Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9-A resolution. Biochemistry 30(43):10576–10588

    Article  PubMed  CAS  Google Scholar 

  33. Christen MT, Frank P, Schaller J, Llinas M (2010) Human plasminogen kringle 3: solution structure, functional insights, phylogenetic landscape. Biochemistry 49(33):7131–7150. https://doi.org/10.1021/bi100687f

    Article  PubMed  CAS  Google Scholar 

  34. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  PubMed  CAS  Google Scholar 

  35. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133(1):95–109

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1):31–39

    Article  PubMed  CAS  Google Scholar 

  37. Sukriti S, Tauseef M, Yazbeck P, Mehta D (2014) Mechanisms regulating endothelial permeability. Pulm Circ 4(4):535–551. https://doi.org/10.1086/677356

    Article  PubMed  PubMed Central  Google Scholar 

  38. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274(33):23463–23467

    Article  PubMed  CAS  Google Scholar 

  39. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    PubMed  CAS  Google Scholar 

  40. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62(15):4263–4272

    PubMed  CAS  Google Scholar 

  41. Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS (2014) Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS ONE 9(4):e93794. https://doi.org/10.1371/journal.pone.0093794PONE-D-13-52020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim GM, Reid T, Shin SJ, Rha SY, Ahn JB, Lee SS, Chung HC (2017) A phase 1, open label, dose escalation study to investigate the safety, tolerability, and pharmacokinetics of MG1102 (apolipoprotein(a) Kringle V) in patients with solid tumors. Invest New Drugs. https://doi.org/10.1007/s10637-017-0460-1

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ma J, Pulfer S, Li S, Chu J, Reed K, Gallo JM (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61(14):5491–5498

    PubMed  CAS  Google Scholar 

  44. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. https://doi.org/10.1126/science.1104819

    Article  PubMed  CAS  Google Scholar 

  45. Leenders W, van Altena M, Lubsen N, Ruiter D, De Waal R (2001) In vivo activities of mutants of vascular endothelial growth factor (VEGF) with differential in vitro activities. Int J Cancer 91 (3):327–333

    Article  PubMed  CAS  Google Scholar 

  46. Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261. https://doi.org/10.1002/jcb.20480

    Article  PubMed  CAS  Google Scholar 

  47. Rodrigues SF, Granger DN (2015) Blood cells and endothelial barrier function. Tissue Barriers 3(1–2):e978720. https://doi.org/10.4161/21688370.2014.978720978720

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bratt A, Birot O, Sinha I, Veitonmaki N, Aase K, Ernkvist M, Holmgren L (2005) Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 280(41):34859–34869. https://doi.org/10.1074/jbc.M503915200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by research grants from Singapore Ministry of Education (RP950358 and RP981308) and Singapore National Medical Research Council (CBRG13nov061) to RG.

Author information

Authors and Affiliations

Authors

Contributions

RG supervised the research; RMK designed the peptide; SV performed most of the experiments with contributions from CK, RC, KNS, VS and MC. VS performed the NMR analysis. SV, CK, KNS, VS and RG wrote the manuscript; All authors read and corrected the manuscript.

Corresponding author

Correspondence to Ruowen Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25 KB)

Supplementary material 2 (PPT 691 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, S., Kao, C., Chandna, R. et al. Angio-3, a 10-residue peptide derived from human plasminogen kringle 3, suppresses tumor growth in mice via impeding both angiogenesis and vascular permeability. Angiogenesis 21, 653–665 (2018). https://doi.org/10.1007/s10456-018-9616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9616-7

Keywords

Navigation