Log in

Sobolev spaces and \(\nabla \)-differential operators on manifolds I: basic properties and weighted spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study covariant Sobolev spaces and \(\nabla \) -differential operators with coefficients in general Hermitian vector bundles on Riemannian manifolds, stressing a coordinate-free approach that uses connections (which are typically denoted \(\nabla \)). These concepts arise naturally from geometric partial differential equations, including some that are formulated on plain Euclidean domains, for instance, from problems formulated on the boundary of smooth domains or in relation to the weighted Sobolev spaces used to study PDEs on polyhedral domains. We prove several basic properties of the covariant Sobolev spaces and of the \(\nabla \)-differential operators on general manifolds. For instance, we prove map** properties for our differential operators and the independence of the covariant Sobolev spaces on the choices of the connection \(\nabla \), as long as the new connection is obtained using a totally bounded perturbation. We also introduce the Fréchet finiteness condition (FFC) for totally bounded vector fields, which is satisfied, for instance, by open subsets of manifolds with bounded geometry. When (FFC) is satisfied, we provide several equivalent definitions of our covariant Sobolev spaces and of our \(\nabla \)-differential operators. We also introduce and study the notion of a \(\nabla \)-bidifferential operator (a bilinear version of differential operators), obtaining results similar to those obtained for \(\nabla \)-differential operators. Bilinear differential operators are necessary for a global, geometric discussion of variational problems. We tried to write the paper so that it is accessible to a large audience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on stratified spaces. Geom. Funct. Anal. 24, 1039–1079 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aldana, C., Carron, G., Tapie, S.: \(a_\infty \) weights and compactness of conformal metrics under \(l^{n/2}\) curvature bounds. ar**v:abs/1810.05387 (2018)

  3. Amann, H.: Function spaces on singular manifolds. Math. Nachr. 286(5–6), 436–475 (2013)

    Article  MathSciNet  Google Scholar 

  4. Amann, H.: Parabolic equations on uniformly regular Riemannian manifolds and degenerate initial boundary value problems. In Recent developments of mathematical fluid mechanics, Advances in Mathematical Fluid Mechanics, pp. 43–77. Birkhäuser/Springer, Basel (2016)

  5. Amann, H.: Cauchy problems for parabolic equations in Sobolev–Slobodeckii and Hölder spaces on uniformly regular Riemannian manifolds. J. Evol. Equ. 17(1), 51–100 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ammann, B., Große, N.: \(L^p\)-spectrum of the Dirac operator on products with hyperbolic spaces. Calc. Var. Partial Differ. Equ. 55(5), 127–163 (2016)

    Article  Google Scholar 

  7. Ammann, B., Große, N.: Relations between threshold constants for Yamabe type bordism invariants. J. Geom. Anal. 26(4), 2842–2882 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ammann, B., Große, N., Nistor, V.: Analysis and boundary value problems on domains with singularities and bounded geometry. Work in progress

  9. Ammann, B., Große, N., Nistor, V.: Well-posedness of the Laplacian on singular spaces. (tentative title), work in progress

  10. Ammann, B., Große, N., Nistor, V.: Analysis and boundary value problems on singular domains: an approach via bounded geometry. C. R. Math. Acad. Sci. Paris 357(6), 487–493 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ammann, B., Große, N., Nistor, V.: The strong Legendre condition and the well-possedness of mixed Robin problems on manifolds with bounded geometry. Rev. Roumaine Math. Pures Appl. 64(2–3), 85–111 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Ammann, B., Große, N., Nistor, V.: Well-posedness of the Laplacian on manifolds with boundary and bounded geometry. Math. Nachr. 292(6), 1213–1237 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ammann, B., Ionescu, A.D., Nistor, V.: Sobolev spaces on Lie manifolds and regularity for polyhedral domains. Doc. Math. (electronic) 11, 161–206 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Ammann, B., Madani, F., Pilca, M.: The \(S^1\)-equivariant Yamabe invariant of 3-manifolds. Int. Math. Res. Not. IMRN 20, 6310–6328 (2017)

    MATH  Google Scholar 

  15. Ammann, B., Nistor, V.: Weighted Sobolev spaces and regularity for polyhedral domains. Comput. Methods Appl. Mech. Engrg. 196(37–40), 3650–3659 (2007)

    Article  MathSciNet  Google Scholar 

  16. Aronszajn, N., Milgram, A.N.: Differential operators on Riemannian manifolds. Rend. Circ. Mat. Palermo 2(2), 266–325 (1953)

    Article  MathSciNet  Google Scholar 

  17. Aubin, T.: Espaces de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. (2) 2, 149–173 (1976)

    MATH  Google Scholar 

  18. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  19. Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates. Numer. Funct. Anal. Optim. 26(6), 613–639 (2005)

    Article  MathSciNet  Google Scholar 

  20. Besse, A.L.: Einstein manifolds. Classics in Mathematics. Springer, Berlin, 2008. Reprint of the 1987 edition

  21. Bordemann, M., Hurle, B., de Araujo, H.-M.: Noncommutative localization in smooth deformation quantization. preprint (private communication) (2021)

  22. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In :Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)

  23. Browder, F.E.: On the spectral theory of elliptic differential operators. I. Math. Ann. 142, 22–130 (1960/1961)

  24. Băcuţă, C., Mazzucato, A., Nistor, V., Zikatanov, L.: Interface and mixed boundary value problems on \(n\)-dimensional polyhedral domains. Doc. Math. 15, 687–745 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Carron, G.: Formes harmoniques \(L^2\) sur les variétés non-compactes. Rend. Mat. Appl. (7) 21, 1–4, 87–119 (2001)

  26. Carron, J., Lye, J., Vertman, B.: Convergence of the Yamabe flow on singular spaces with positive Yamabe constant, pp. 1–52. ar**v:abs/2106.01799v1 (2021)

  27. Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22(8), 1250015, 63 (2012)

  28. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, vol. 1341 of Lecture Notes in Mathematics. Springer, Berlin (1988). Smoothness and asymptotics of solutions

  29. Disconzi, M., Ifrim, M., Tataru, D.: The Relativistic Euler Equations with a Physical Vacuum Boundary: Hadamard Local Well-Posedness, Rough Solutions, and Continuation Criterion. (2020) ar**v:abs/2007.05787

  30. Disconzi, M., Shao, Y., Simonett, G.: Some remarks on uniformly regular Riemannian manifolds. Math. Nachr. 289(2–3), 232–242 (2016)

    Article  MathSciNet  Google Scholar 

  31. Golénia, S., Moroianu, S.: Spectral analysis of magnetic Laplacians on conformally cusp manifolds. Ann. Henri Poincaré 9(1), 131–179 (2008)

    Article  MathSciNet  Google Scholar 

  32. Golénia, S., Moroianu, S.: The spectrum of Schrödinger operators and Hodge Laplacians on conformally cusp manifolds. Trans. Am. Math. Soc. 364(1), 1–29 (2012)

    Article  Google Scholar 

  33. Gounoue F, G.-F.: A remake on the Bourgain-Brezis-Mironescu characterization of Sobolev spaces, pp 1–24. ar**v:2008.07631v2 (2020)

  34. Große, N., Kohr, M., Nistor, V.: Sobolev spaces and \(\nabla \)-differential operators on manifolds II: Christoffel polynomials. Work in progress

  35. Große, N., Nistor, V.: Uniform Shapiro–Lopatinski conditions and boundary value problems on manifolds with bounded geometry. Potential Anal. 53(2), 407–447 (2020)

    Article  MathSciNet  Google Scholar 

  36. Große, N., Schneider, C.: Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Math. Nachr. 286(16), 1586–1613 (2013)

    Article  MathSciNet  Google Scholar 

  37. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)

    Book  Google Scholar 

  38. Hebey, E., Robert, F.: Sobolev spaces on manifolds. In: Handbook of Global Analysis, vol. 1213, pp. 375–415. Elsevier Science B. V., Amsterdam (2008)

  39. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin

  40. Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition

  41. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, 2nd edn. Springer, Switzerland (2021)

    Book  Google Scholar 

  42. Iftimie, V., Măntoiu, M., Purice, R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 43(3), 585–623 (2007)

    Article  MathSciNet  Google Scholar 

  43. Jost, J.: Partial Differential Equations, 2nd ed., vol. 214 of Graduate Texts in Mathematics. Springer, New York (2007)

  44. Kohr, M., Mikhailov, S.E., Wendland, W.L.: Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with \({L}_\infty \) strongly elliptic coefficient tensor. Complex Var. Elliptic Equ. 65, 109–140 (2020)

    Article  MathSciNet  Google Scholar 

  45. Kohr, M., Wendland, W.L.: Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calc. Var. Partial Differ. Equ. 3–4, 57–165 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Kondrat\(^{\prime }\)ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Transl. Moscow Math. Soc. 16, 227–313 (1967)

  47. Kozlov, V., Maz\(^{\prime }\)ya, V., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, vol. 85 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)

  48. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson structures. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 347. Springer, Heidelberg (2013)

  49. Lions, J.-L., Magenes, E.: Non-homogeneous., boundary value problems and applications. Vol. I. Springer, New York. Translated from the French by P, p. 181. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band (1972)

  50. Maz’ya, V., Rossmann, J.: Mixed boundary value problems for the stationary Navier–Stokes system in polyhedral domains. Arch. Rational Mech. Anal. 194, 669–712 (2009)

  51. Mazzucato, A., Nistor, V.: Map** properties of heat kernels, maximal regularity, and semi-linear parabolic equations on noncompact manifolds. J. Hyperbolic Differ. Equ. 3(4), 599–629 (2006)

    Article  MathSciNet  Google Scholar 

  52. Milnor, J., Stasheff, J.: Characterstic Classes, vol. 76 of Annals of Mathematics Studies. Princeton (1974)

  53. Mitrea, D., Mitrea, I., Mitrea, M., Taylor, M.: The Hodge-Laplacian, vol. 64 of De Gruyter Studies in Mathematics. De Gruyter, Berlin (2016). Boundary value problems on Riemannian manifolds

  54. Moroianu, S.: Weyl laws on open manifolds. Math. Ann. 340(1), 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  55. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter Expositions in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1994)

    Book  Google Scholar 

  56. Nguyen, H.-M., Pinamonti, A., Squassina, M., Vecchi, E.: Some characterizations of magnetic Sobolev spaces. Complex Var. Elliptic Equ. 65(7), 1104–1114 (2020)

    Article  MathSciNet  Google Scholar 

  57. Peetre, J.: Une caractérisation abstraite des opérateurs différentiels. Math. Scand. 7, 211–218 (1959)

    Article  MathSciNet  Google Scholar 

  58. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Inc, New York (1991)

    MATH  Google Scholar 

  59. Seeley, R.T.: Singular integrals on compact manifolds. Am. J. Math. 81, 658–690 (1959)

    Article  MathSciNet  Google Scholar 

  60. Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  Google Scholar 

  61. Tamarkin, D., Tsygan, B.: The ring of differential operators on forms in noncommutative calculus. In: Graphs and Patterns in Mathematics and Theoretical Physics, vol. 73 of Proceedings of Symposia in Pure Mathematics, pp. 105–131. American Mathematical Society, Providence (2005)

  62. Taylor, M.: Partial Differential Equations I. Basic theory, 2nd ed., vol. 115 of Applied Mathematical Sciences. Springer, New York (2011)

  63. Triebel, H.: Characterizations of function spaces on a complete Riemannian manifold with bounded geometry. Math. Nachr. 130, 321–346 (1987)

    Article  MathSciNet  Google Scholar 

  64. Triebel, H.: Theory of function spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2010. Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]

  65. Viaclovsky, J.: Einstein metrics and Yamabe invariants of weighted projective spaces. Tohoku Math. J. 65, 297–311 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Herbert Amann, Bernd Ammann, Nadine Große, Sergiu Moroianu, and Radu Purice for useful discussions. We thank Camille Laurent-Gengoux and Martin Bordemann for useful references. We also thank the referees for carefully reading the paper. Our results do not require any supporting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirela Kohr.

Additional information

In memory of Professor Gabriela Kohr, with deep respect.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.K. has been partially supported by AGC35124/31.10.2018. V.N. has been partially supported by ANR-14-CE25-0012-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohr, M., Nistor, V. Sobolev spaces and \(\nabla \)-differential operators on manifolds I: basic properties and weighted spaces. Ann Glob Anal Geom 61, 721–758 (2022). https://doi.org/10.1007/s10455-022-09824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-022-09824-6

Keywords

Mathematics Subject Classification

Navigation