Log in

Can a Musculoskeletal Model Adapted to Knee Implant Geometry Improve Prediction of 3D Contact Forces and Moments?

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tibiofemoral contact loads are crucial parameters in the onset and progression of osteoarthrosis. While contact loads are frequently estimated from musculoskeletal models, their customization is often limited to scaling musculoskeletal geometry or adapting muscle lines. Moreover, studies have usually focused on superior–inferior contact force without investigating three-dimensional contact loads. Using experimental data from six patients with instrumented total knee arthroplasty (TKA), this study customized a lower limb musculoskeletal model to consider the positioning and the geometry of the implant at knee level. Static optimization was performed to estimate tibiofemoral contact forces and contact moments as well as musculotendinous forces. Predictions from both a generic and a customized model were compared to the instrumented implant measurements. Both models accurately predict superior–inferior (SI) force and abduction–adduction (AA) moment. Notably, the customization improves prediction of medial–lateral (ML) force and flexion–extension (FE) moments. However, there is subject-dependent variability in the prediction of anterior–posterior (AP) force. The customized models presented here predict loads on all joint axes and in most cases improve prediction. Unexpectedly, this improvement was more limited for patients with more rotated implants, suggesting a need for further model adaptations such as muscle wrap** or redefinition of hip and ankle joint centers and axes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Au, A. G., V. James Raso, A. B. Liggins, and A. Amirfazli. Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J. Biomech. 40:1410–1416, 2007.

    Article  PubMed  Google Scholar 

  2. Barzan, M., L. Modenese, C. P. Carty, S. Maine, C. A. Stockton, N. Sancisi, A. Lewis, J. Grant, D. G. Lloyd, and S. Brito da Luz. Development and validation of subject-specific pediatric multibody knee kinematic models with ligamentous constraints. J. Biomech. 93:194–203, 2019.

    Article  PubMed  Google Scholar 

  3. Bedo, B. L. S., Catelli, D. S., Lamontagne, M., and Santiago, P. R. P. A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions. Comput. Methods Biomech. Biomed. Engin. 23:658–663, 2020.

    Article  PubMed  Google Scholar 

  4. Bennett, K. J., C. Pizzolato, S. Martelli, J. S. Bahl, A. Sivakumar, G. J. Atkins, L. Bogdan Solomon, and D. Thewlis. EMG-informed neuromusculoskeletal models accurately predict knee loading measured using instrumented implants. IEEE Trans. Biomed. Eng. 69:2268–2275, 2022.

    Article  PubMed  Google Scholar 

  5. Blunn, G. W., A. B. Joshi, R. J. Minns, L. Lidgren, P. Lilley, L. Ryd, E. Engelbrecht, and P. S. Walker. Wear in retrieved condylar knee arthroplasties. J. Arthroplasty. 12:281–290, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Brito da Luz, S., L. Modenese, N. Sancisi, P. M. Mills, B. Kennedy, B. R. Beck, and D. G. Lloyd. Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J. Biomech. 53:45–55, 2017.

    Article  PubMed  Google Scholar 

  7. Byrapogu, V., T. Gale, L. Dukens, B. Hamlin, K. L. Urish, and W. Anderst. How well does intra-operative contact path predict post-operative contact path during activities of daily living. Med. Eng. Phys.111:103948, 2023.

    Article  PubMed  Google Scholar 

  8. Catelli, D. S., M. Wesseling, I. Jonkers, and M. Lamontagne. A musculoskeletal model customized for squatting task. Comput. Methods Biomech. Biomed. Engin. 22:21–24, 2019.

    Article  PubMed  Google Scholar 

  9. Li, C., Hosseini, A., Tsai, T. Y., Kwon, Y. M., and Li, G. Articular contact kinematics of the knee before and after a cruciate retaining total knee arthroplasty. J. Orthop. Res. 33:349–358, 2015.

    Article  CAS  PubMed  Google Scholar 

  10. Clément, J., R. Dumas, N. Hagemeister, and J. A. de Guise. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models. J. Biomech. 48:3796–3802, 2015.

    Article  PubMed  Google Scholar 

  11. Dejtiar, D. L., C. M. Dzialo, P. H. Pedersen, K. K. Jensen, M. K. Fleron, and M. S. Andersen. Development and evaluation of a subject-specific lower limb model with an eleven-degrees-of-freedom natural knee model using magnetic resonance and biplanar X-ray imaging during a quasi-static Lunge. J. Biomech. Eng.142:061001, 2020.

    Article  PubMed  Google Scholar 

  12. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. DeMers, M. S., S. Pal, and S. L. Delp. Changes in tibiofemoral forces due to variations in muscle activity during walking: tibiofemoral forces and muscle activity. J. Orthop. Res. 32:769–776, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dumas, R., A. Barré, F. Moissenet, and R. Aissaoui. Can a reduction approach predict reliable joint contact and musculo-tendon forces? J. Biomech.95:109329, 2019.

    Article  PubMed  Google Scholar 

  15. Dumas, R., and L. Chèze. 3D inverse dynamics in non-orthonormal segment coordinate system. Med. Biol. Eng. Comput. 45:315–322, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Dumas, R., L. Cheze, and F. Moissenet. Multibody optimisations: from kinematic constraints to knee contact forces and ligament forces. In: Biomechanics of Anthropomorphic Systems, edited by G. Venture, J.-P. Laumond, and B. Watier. Cham: Springer, 2019, pp. 65–89.

    Chapter  Google Scholar 

  17. Dumas, R., and F. Moissenet. Accuracy of the tibiofemoral contact forces estimated by a subject-specific musculoskeletal model with fluoroscopy-based contact point trajectories. J. Biomech.113:110117, 2020.

    Article  PubMed  Google Scholar 

  18. Dumas, R., A. Zeighami, and R. Aissaoui. Knee medial and lateral contact forces computed along subject-specific contact point trajectories of healthy volunteers and osteoarthritic patients. In: Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering, edited by G. A. Ateshian, K. M. Myers, and J. M. R. S. Tavares. Cham: Springer, 2020, pp. 457–463.

    Chapter  Google Scholar 

  19. Duprey, S., L. Cheze, and R. Dumas. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 43:2858–2862, 2010.

    Article  PubMed  Google Scholar 

  20. Dzialo, C. M., P. H. Pedersen, K. K. Jensen, M. de Zee, and M. S. Andersen. Evaluation of predicted patellofemoral joint kinematics with a moving-axis joint model. Med. Eng. Phys. 73:85–91, 2019.

    Article  CAS  PubMed  Google Scholar 

  21. Erdemir, A., S. McLean, W. Herzog, and A. J. van den Bogert. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22:131–154, 2007.

    Article  Google Scholar 

  22. Fitzpatrick, C. K., P. Hemelaar, and M. Taylor. Computationally efficient prediction of bone–implant interface micromotion of a cementless tibial tray during gait. J. Biomech. 47:1718–1726, 2014.

    Article  PubMed  Google Scholar 

  23. Gerus, P., M. Sartori, T. F. Besier, B. J. Fregly, S. L. Delp, S. A. Banks, M. G. Pandy, D. D. D’Lima, and D. G. Lloyd. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46:2778–2786, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gray, H. A., S. Guan, T. Young, M. Dowsey, P. Choong, and M. Pandy. Comparison of posterior-stabilized cruciate-retaining and medial-stabilized. J. Orthop. Res. 38:1753–1768, 2020.

    Article  PubMed  Google Scholar 

  25. Hast, M. W., and S. J. Piazza. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion. J. Biomech. Eng.135:021013, 2013.

    Article  PubMed  Google Scholar 

  26. Hosseini Nasab, S. H., C. R. Smith, A. Maas, A. Vollenweider, J. Dymke, P. Schütz, P. Damm, A. Trepczynski, and W. R. Taylor. Uncertainty in muscle–tendon parameters can greatly influence the accuracy of knee contact force estimates of musculoskeletal models. Front. Bioeng. Biotechnol. 10:808027–29, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Imani Nejad, Z., K. Khalili, S. H. Hosseini Nasab, P. Schütz, P. Damm, A. Trepczynski, W. R. Taylor, and C. R. Smith. The capacity of generic musculoskeletal simulations to predict knee joint loading using the CAMS-Knee datasets. Ann. Biomed. Eng. 48:1430–1440, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kebbach, M., M. Darowski, S. Krueger, C. Schilling, T. M. Grupp, R. Bader, and A. Geier. Musculoskeletal multibody simulation analysis on the impact of patellar component design and positioning on joint dynamics after unconstrained total knee arthroplasty. Materials. 13:2365, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kia, M., A. P. Stylianou, and T. M. Guess. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med. Eng. Phys. 36:335–344, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kour, R. Y. N., S. Guan, M. M. Dowsey, P. F. Choong, and M. G. Pandy. Kinematic function of knee implant designs across a range of daily activities. J. Orthop. Res. 2022. https://doi.org/10.1002/jor.25476.

    Article  PubMed  Google Scholar 

  31. Laz, P. J., S. Pal, A. Fields, A. J. Petrella, and P. J. Rullkoetter. Effects of knee simulator loading and alignment variability on predicted implant mechanics: a probabilistic study. J. Orthop. Res. 24:2212–2221, 2006.

    Article  PubMed  Google Scholar 

  32. Lenhart, R. L., J. Kaiser, C. R. Smith, and D. G. Thelen. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann. Biomed. Eng. 43:2675–2685, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lerner, Z. F., M. S. DeMers, S. L. Delp, and R. C. Browning. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 48:644–650, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, J., T. Tsai, M. M. Clancy, C. L. Lewis, D. T. Felson, and G. Li. Cartilage contact characteristics of the knee during gait in individuals with obesity. J. Orthop. Res. 40:2480–2487, 2022.

    Article  PubMed  Google Scholar 

  35. Liau, J.-J., C.-K. Cheng, C.-H. Huang, and W.-H. Lo. The effect of malalignment on stresses in polyethylene component of total knee prostheses—a finite element analysis. Clin. Biomech. 17:140–146, 2002.

    Article  Google Scholar 

  36. Lin, Y., J. Walter, S. Banks, M. Pandy, and B. J. Fregly. Simultaneously prediction of muscle and contact forces in the knee during gait. J. Biomech. 43:945–952, 2010.

    Article  PubMed  Google Scholar 

  37. Manal, K., and T. S. Buchanan. An efficient one-step moment balancing algorithm for computing medial and lateral knee compartment contact forces. J. Biomech. Eng.144:034501, 2022.

    Article  PubMed  Google Scholar 

  38. Marra, M. A., V. Vanheule, R. Fluit, B. H. F. J. M. Koopman, J. Rasmussen, N. Verdonschot, and M. S. Andersen. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 137:020904, 2015.

    Article  PubMed  Google Scholar 

  39. Martelli, S., N. Sancisi, M. Conconi, M. G. Pandy, M. E. Kersh, V. Parenti-Castelli, and K. J. Reynolds. The relationship between tibiofemoral geometry and musculoskeletal function during normal activity. Gait Posture. 80:374–382, 2020.

    Article  PubMed  Google Scholar 

  40. McEwen, H. M. J., P. I. Barnett, C. J. Bell, R. Farrar, D. D. Auger, M. H. Stone, and J. Fisher. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J. Biomech. 38:357–365, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Modenese, L., M. Barzan, and C. P. Carty. Dependency of lower limb joint reaction forces on femoral version. Gait Posture. 88:318–321, 2021.

    Article  PubMed  Google Scholar 

  42. Moissenet, F., L. Chèze, and R. Dumas. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47:50–58, 2014.

    Article  PubMed  Google Scholar 

  43. Moissenet, F., L. Modenese, and R. Dumas. Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: a systematic review. J. Biomech. 63:8–20, 2017.

    Article  CAS  PubMed  Google Scholar 

  44. Saxby, D. J., and D. G. Lloyd. Osteoarthritis year in review 2016: mechanics. Osteoarthritis Cartilage. 25:190–198, 2017.

    Article  CAS  PubMed  Google Scholar 

  45. Schellenberg, F., W. R. Taylor, A. Trepczynski, R. List, I. Kutzner, P. Schütz, G. N. Duda, and S. Lorenzetti. Evaluation of the accuracy of musculoskeletal simulation during squats by means of instrumented knee prostheses. Med. Eng. Phys. 61:95–99, 2018.

    Article  PubMed  Google Scholar 

  46. Taylor, W. R., P. Schütz, G. Bergmann, R. List, B. Postolka, M. Hitz, J. Dymke, P. Damm, G. Duda, H. Gerber, V. Schwachmeyer, S. H. Hosseini Nasab, A. Trepczynski, and I. Kutzner. A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J. Biomech. 65:32–39, 2017.

    Article  PubMed  Google Scholar 

  47. Trepczynski, A., I. Kutzner, E. Kornaropoulos, W. R. Taylor, G. N. Duda, G. Bergmann, and M. O. Heller. Patellofemoral joint contact forces during activities with high knee flexion. J. Orthop. Res. 30:408–415, 2012.

    Article  PubMed  Google Scholar 

  48. Trepczynski, A., I. Kutzner, P. Schütz, J. Dymke, R. List, P. von Roth, P. Moewis, G. Bergmann, W. R. Taylor, and G. N. Duda. Tibio-femoral contact force distribution is not the only factor governing pivot location after total knee arthroplasty. Sci. Rep. 9:182, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trinler, U., K. Hollands, R. Jones, and R. Baker. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses. Gait Posture. 61:353–361, 2018.

    Article  PubMed  Google Scholar 

  50. Varadarajan, K. M., A. L. Moynihan, D. D’Lima, C. W. Colwell, and G. Li. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities. J. Biomech. 41:2159–2168, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu, G., S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid, and I. Stokes. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35:543–548, 2002.

    Article  PubMed  Google Scholar 

  52. Zargham, A., M. Afschrift, J. De Schutter, I. Jonkers, and F. De Groote. Inverse dynamic estimates of muscles recruitment and joint contact forces are more realistic when minimizing muslce activity rather than metabolic energy or contact forces. Gait Posture. 74:223–230, 2019.

    Article  PubMed  Google Scholar 

  53. Zeighami, A., R. Aissaoui, and R. Dumas. Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories. J. Biomech. 69:138–145, 2018.

    Article  CAS  PubMed  Google Scholar 

  54. Zeighami, A., R. Dumas, M. Kanhonou, N. Hagemeister, F. Lavoie, J. A. de Guise, and R. Aissaoui. Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysis. J. Biomech. 53:178–184, 2017.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, L., G. Liu, Y. Yan, B. Han, H. Li, J. Ma, and X. Wang. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities. Comput. Methods Biomech. Biomed. Eng. 2022. https://doi.org/10.1080/10255842.2022.2101889.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially financed by Région Auvergne Rhône Alpes (PAI 2021). We thank Marjorie Sweetko for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Dumas.

Ethics declarations

Conflict of interest

The authors do not have any financial or personal relationships with other people or organizations that have inappropriately influenced this study.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 894 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guitteny, S., Aissaoui, R. & Dumas, R. Can a Musculoskeletal Model Adapted to Knee Implant Geometry Improve Prediction of 3D Contact Forces and Moments?. Ann Biomed Eng 51, 1872–1883 (2023). https://doi.org/10.1007/s10439-023-03216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03216-y

Keywords

Navigation