Log in

Left Ventricular Hemodynamics with an Implanted Assist Device: An In Vitro Fluid Dynamics Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Left ventricle assist devices (VADs) aid the heart pum** blood into the systemic circulation and grant the required cardiac output (CO) when the heart itself cannot provide it. However, it is unclear how effective these devices are at restoring not only physiological CO values but also normal intraventricular hemodynamics. In this work, the modified hemodynamics due to a VAD implantation is studied in vitro using an elastic ventricle made of silicone, which is incorporated into a pulse-duplicator setup prescribing a realistic pulsatile flow. Thereafter, a continuous axial pump is connected at the ventricle apex to mimic a VAD and its effect on the ventricular hemodynamics is investigated as a function of the pump flow suction. Using particle image velocimetry (PIV), we observe that the continuous pump flow effectively provides unloading on the ventricle and yields an increased CO. Conversely, the continuous blood suction from the ventricle apex deeply alters the hemodynamics and, in addition, the VAD obstruction in the ventricle behaves as a bluff body that affects the vorticity distribution in the LV thus creating a stagnant region at the ventricle apex. This phenomenon is rationalized by measuring in a modified set-up the benefits on the hemodynamics of a flush-mounted device. Additionally, the suction operated by the VAD reduces the ventricular pressure and yields an increase in the swirling motion around the ventricle axis, in a similar fashion as the bath-tub vortex effect, thus further modifying the intraventricular hemodynamics with respect to healthy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Allen, J.G., E.S. Weiss, J.M. Schaffer, N.D. Patel, S.L. Ullrich, S.D. Russell, A.S. Shah, and J.V Conte. Quality of life and functional status in patients surviving 12 months after left ventricular assist device implantation. The Journal of Heart and Lung Transplantation. 29(3): 278–285, 2010.

    Article  Google Scholar 

  2. Blausen.com staff. Medical gallery of Blausen Medical 2014. WikiJ. Med. 1(2), 10, 2014.

    Google Scholar 

  3. Baldwin, J. T., I. Adachi, J. Teal, C.A. Almond, R.D. Jaquiss, M.P. Massicotte, K. Dasse, F.S. Siami, V. Zak, J.R. Kaltman, W.T. Mahle. Closing in on the PumpKIN trial of the Jarvik 2015 ventricular assist device. In: Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, Vol. 20. WB Saunders, 2017, pp. 9–15.

  4. Banchs, J.E., B. Dawn, A. Abdel-Latif, A. Qureshi, N. Agrawal, M. Bouvette, M.F. Stoddard. Acquired aortic cusp fusion after chronic left ventricular assist device support. J. Am. Soc. Echocardiogr. 19(11):1401–1402, 2006.

    Article  Google Scholar 

  5. Barbagallo, A., D. Sipp, P.J. Schmid. Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641:1–50, 2009.

    Article  Google Scholar 

  6. Benjamin, E.J., et al.; on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2018 update: a report from the American Heart Association [published online ahead of print January 31, 2018]. Circulation.

  7. Cenedese, A., Z. D. Prete, M. Miozzi, G. Querzoli. A laboratory investigation of the flow in the left ventricle of a human heart with prosthetic, tilting-disk valves. Exp. Fluids 39:322–335, 2005.

    Article  Google Scholar 

  8. Connelly, J. H., J. Abrams, T. Klima, W. K. Vaughn , O. H. Frazier. Acquired commissural fusion of aortic valves in patients with left ventricular assist devices. J. Heart Lung Transpl. 22(12):1291–1295, 2003.

    Article  Google Scholar 

  9. Faludi, R., M. Szulik, J. Dhooge et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: An in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139(6):1501–1510, 2010

    Article  PubMed  Google Scholar 

  10. Fortini, S., G. Querzoli, S. Espa, A. Cenedese. Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp. Fluids 54:1–9, 2013.

    Article  Google Scholar 

  11. Frazier, O. H., T. J. Myers, S. Westaby, and I. D.Gregoric. Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann. Surg. 237(5); 631, 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hata, H., T. Fujita, H. Ishibashi-Ueda, T. Nakatani, and J. Kobayashi. Pathological analysis of the aortic valve after long-term left ventricular assist device support. Eur. J. Cardiothorac. Surg. 46:193–197, 2014

    Article  PubMed  Google Scholar 

  13. Healy, A. H., S. H. McKellar, S. G. Drakos, A. Koliopoulou, J. Stehlik, and C. H. Selzman. Physiologic effects of continuous-flow left ventricular assist devices. J. Surg. Res. 202(2):363–371, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. John, R.. Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices. In: Seminars in Thoracic and Cardiovascular Surgery, Vol. 20(3), WB Saunders, 2008, pp. 264–272.

  15. Karmonik, C., S. Partovi, M. Loebe, et al. Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J. Thorac. Cardiovasc. Surg. 147(4), 1326–1333, 2014.

    Article  PubMed  Google Scholar 

  16. Katz A. M. Physiology of the Heart. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  17. Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23(1): 86–94, 2010.

    Article  PubMed  Google Scholar 

  18. Lahpor, J. R. State of the art: implantable ventricular assist devices. Curr. Opin. Organ Transpl. 14(5): 554–559, 2009.

    Article  CAS  Google Scholar 

  19. Meschini, V., M. De Tullio, G. Querzoli, and R. Verzicco. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J Fluid Mech. 834:271–307, 2018.

    Article  Google Scholar 

  20. Mizuguchi, K., G. Damm, R. Benkowsky, G. Aber, J. Bacak, P. Svjkovsky, J. Glueck, S. Takatani, Y. Nosé, G. P. Noon, and M. E. DeBakey. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation. Artif. Organs 19(7):653–659, 1995.

    Article  CAS  PubMed  Google Scholar 

  21. Picano, E. Stress Echocardiography. Heidelberg: Springer, 2003.

    Book  Google Scholar 

  22. Querzoli, G., S. Fortini, and A. Cenedese. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids (1994-present) 22:041901, 2010.

    Article  CAS  Google Scholar 

  23. Runge, M.S. and M. Ohman. Netter’s Cardiology. Philadelphia, PA: Saunders/Elsevier, 2010.

    Google Scholar 

  24. Saffman, P.G.. Vortex Dynamics. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  25. Sibulkin, M. A note on the bathtub vortex. J. Fluid Mech. 14:21–24, 1962.

    Article  Google Scholar 

  26. Siginer, D. A., D. De Kee, and R. P. Chhabra. Advances in the Flow and Rheology of Non-Newtonian Fluids, Vol. 8. Amsterdam: Elsevier, 1999.

    Google Scholar 

  27. Stainback, R. F., M. Croitoru, A. Hernandez, T. J. Myers, Y. Wadia, and O. H. Frazier. Echocardiographic evaluation of the Jarvik 2000 axial-flow LVAD. Tex. Heart Inst. J. 32(3):263, 2005.

    PubMed  PubMed Central  Google Scholar 

  28. Thielicke, W. and E. J. Stamhuis: PIVlab—Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB. 2014.

  29. Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33(9):1041–1047, 2011.

    Article  PubMed  Google Scholar 

  30. Timms, D., J. Fraser, M. Hayne, J. Dunning, K. McNeil, and M. Pearcy. The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif. Organs. 32(10):816–819, 2008.

    Article  PubMed  Google Scholar 

  31. Trulock E. P., J. D. Christie, L. B. Edwards, M. M. Boucek, P. Aurora, D. O. Taylor, F. Dobbels, A. O. Rahmel, B. M. Keck, and M. I. Hertz. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report—2007. J. Heart Lung Transpl. 26(8):782–795, 2007.

    Article  Google Scholar 

  32. Tuzun, E., K. Pennings, S. van Tuijl, J. de Hart, M. Stijnen, F. van de Vosse, B. de Mol, and M. Rutten. Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device. Eur. J. Cardiothorac. Surg. 45(2):377–383, 2013.

    Article  PubMed  Google Scholar 

  33. Tuzun, E., M. Rutten, M. Dat, F. Van De Vosse, C. Kadipasaoglu and B. De Mol. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop. J. Surg. Res. 171(2):443–447, 2011.

    Article  PubMed  Google Scholar 

  34. Ventricular Assist Devices (VADs). Texas Heart Institute. https://www.texasheart.org/heart-health/heart-information-center/topics/ventricular-assist-devices/. Accessed July 19, 2018.

  35. Westaby, S., K. Anastasiadis, and G. M. Wieselthaler. Cardiogenic shock in ACS. Nat. Rev. Cardiol. 9(4):195, 2012.

    Article  PubMed  Google Scholar 

  36. Westaby, S., T. Katsumata, R. Houel, R. Evans, D. Pigott, O. H. Frazier, and R. Jarvik. Jarvik 2000 heart: potential for bridge to myocyte recovery. Circulation 98(15):1568–1574, 1998.

    Article  CAS  PubMed  Google Scholar 

  37. Wheeldon, D. R., D. H. LaForge, J. Lee, P. G. Jansen, J. S. Jassawalla, and P. M. Portner. Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. Asaio J. 48(5):546–551, 2002.

    Article  PubMed  Google Scholar 

  38. **e, A., K. Phan, and T. D. Yan. Durability of continuous-flow left ventricular assist devices: a systematic review. Ann. Cardiothorac. Surg. 3(6):547–556, 2014.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang, Q., B. Gao, and C. Yu. The effects of left ventricular assist device support level on the biomechanical states of aortic valve. Med. Sci. Monit. 24:2003, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Davide De Manna for his help on the silicone ventricle manufacturing and Arianna Clemente for preliminary tests on the laboratory VAD system. Carlotta Rellini is acknowledged for her suggestions on the in vitro modelling of the problem and aid in the fabrication of the mitral valve, as well as for the useful discussions on the clinical relevance of our results. F.V. acknowledges the support of the Swiss National Science Foundation (Grant Nos. P2ELP2_172320 and P400P2_180738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Viola.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viola, F., Jermyn, E., Warnock, J. et al. Left Ventricular Hemodynamics with an Implanted Assist Device: An In Vitro Fluid Dynamics Study. Ann Biomed Eng 47, 1799–1814 (2019). https://doi.org/10.1007/s10439-019-02273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02273-6

Navigation