Log in

The Importance of the Scalp in Head Impact Kinematics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The best way to reduce the risk of head injury (up to 69% reduction) is to wear a helmet. In recent years, the improvement of helmet standard tests focused on reproducing realistic impact conditions and including the effect of rotational acceleration. However, less importance has been given to the development of a realistic headform. The goal of this work was to evaluate the role of scalp tissue in head impact kinematics; both with respect to its mechanical properties and with respect to its sliding properties. An EN960 and HIII headform were subjected to linear and oblique impacts, respectively, both with and without porcine scalp attached. Different speeds, impact locations and impact surfaces were tested. Standard linear drop tests (EN960) showed that the scalp reduced the impact energy by up to 68.7% (rear impact). Oblique head impact tests showed how the headform-anvil friction coefficient changes when the HIII is covered with scalp, affecting linear and rotational accelerations. Therefore, the scalp plays an important role in head impacts and it should be realistically represented in headforms used for impact tests and in numerical models of the human head.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aare, M., and P. Halldin. A new laboratory rig for evaluating helmets subject to oblique impacts. Traffic Inj. Prev. 4(3):240–248, 2003.

    Article  PubMed  Google Scholar 

  2. Amoros, E., M. Chiron, J.-L. Martin, B. Thélot, and B. Laumon. Bicycle helmet wearing and the risk of head, face, and neck injury: a French case–control study based on a road trauma registry. Inj. Prev. 18(1):27–32, 2012.

    Article  PubMed  Google Scholar 

  3. Attewell, R. G., K. Glase, and M. McFadden. Bicycle helmet efficacy: a meta-analysis. Accid. Anal. Prev. 33(3):345–352, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Avon, S., and R. Wood. Porcine skin as an porcine skin as an in vivo model for model for ageing of human bite marks. J. Forensic Odontostomatol. 23:30–39, 2005.

    CAS  PubMed  Google Scholar 

  5. Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40(1):237–248, 2012.

    Article  PubMed  Google Scholar 

  6. Bourdet, N., C. Deck, R. P. Carreira, and R. Willinger. Head impact conditions in the case of cyclist falls. Proc. Inst. Mech. Eng. Part P 226(3–4):282–289, 2012.

    Google Scholar 

  7. Campbell, K. R., M. J. Warnica, I. C. Levine, J. S. Brooks, A. C. Laing, T. A. Burkhart, and J. P. Dickey. Laboratory evaluation of the gForce Tracker™, a head impact kinematic measuring device for use in football helmets. Ann. Biomed. Eng. 44(4):1246–1256, 2016.

    Article  PubMed  Google Scholar 

  8. CEN/TC 158/WG 11 N 185—Headforms and test methods. European Commission, B., Belgium, 2015.

  9. Chan, H. S. Mathematical model for closed head impact. SAE Technical Paper, 1974.

  10. Ebrahimi, I., F. Golnaraghi, and G. G. Wang. Factors influencing the oblique impact test of motorcycle helmets. Traffic Inj. Prev. 16(4):404–408, 2015.

    Article  PubMed  Google Scholar 

  11. Finan, J. D., R. W. Nightingale, and B. S. Myers. The influence of reduced friction on head injury metrics in helmeted head impacts. Traffic Inj. Prev. 9(5):483–488, 2008.

    Article  PubMed  Google Scholar 

  12. Forero Rueda, M. A., L. Cui, and M. D. Gilchrist. Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs. Comput. Methods Biomech. Biomed. Eng. 14(12):1021–1031, 2011.

    Article  CAS  Google Scholar 

  13. Gennarelli, T. A., L. E. Thibault, G. Tomei, R. Wiser, D. Graham, and J. Adams, Directional dependence of axonal brain injury due to centroidal and non-centroidal acceleration, No. 872197. SAE Technical Paper, 1987.

  14. Gurdjian, E. S. Recent advances in the study of the mechanism of impact injury of the head–a summary. Clin. Neurosurg. 19:1–42, 1972.

    Article  CAS  PubMed  Google Scholar 

  15. Halldin, P. and S. Kleiven. The development of next generation test standards for helmets. In: Proceedings of the 1st International Conference on Helmet Performance and Design, 2013.

  16. Halldin, P., D. Lanner, R. Coomber, and S. Kleiven. Evaluation of blunt impact protection in a military helmet designed to offer blunt and ballistic impact protection. In: Childs, P. R. N., Bull, A., Ghajari, M. (eds.) Proceedings of the first International Conference on Helmet Performance and Design, 2013.

  17. Hardy, C. H., and P. V. Marcal. Elastic Analysis of a Skull. Providence: Division of Engineering, Brown University, 1971.

    Google Scholar 

  18. Holbourn, A. Mechanics of head injuries. Lancet 242(6267):438–441, 1943.

    Article  Google Scholar 

  19. Keng, S.-H. Helmet use and motorcycle fatalities in Taiwan. Accid. Anal. Prev. 37(2):349–355, 2005.

    Article  PubMed  Google Scholar 

  20. Khalil, T. B., W. Goldsmith, and J. Sackman. Impact on a model head-helmet system. Int. J. Mech. Sci. 16(9):609–625, 1974.

    Article  Google Scholar 

  21. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81, 2007.

    PubMed  Google Scholar 

  22. Kleiven, S. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are. Front. Bioeng. Biotechnol. 1:15, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lavker, R. M., G. Dong, P. Zheng, and G. F. Murphy. Hairless micropig skin. A novel model for studies of cutaneous biology. Am. J. Pathol. 138(3):687, 1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McIntosh, A., B. Dowdell, and N. Svensson. Pedal cycle helmet effectiveness: a field study of pedal cycle accidents. Accid. Anal. Prev. 30(2):161–168, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Otte, D., B. Chinn, D. Doyle, S. Mäkitupa, K. Sturrock, and E. Schuller. Contribution to final report of COST 327 project. University of Hannover, 1999.

  26. Povey, L. J., W. Frith, and P. Graham. Cycle helmet effectiveness in New Zealand. Accid. Anal. Prev. 31(6):763–770, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Richter, M., D. Otte, U. Lehmann, B. Chinn, E. Schuller, D. Doyle, K. Sturrock, and C. Krettek. Head injury mechanisms in helmet-protected motorcyclists: prospective multicenter study. J. Trauma Acute Care Surg. 51(5):949–958, 2001.

    Article  CAS  Google Scholar 

  28. Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27(1):8–14, 2011.

    Article  PubMed  Google Scholar 

  29. Seery, G. E. Surgical anatomy of the scalp. Dermatol. Surg. 28(7):581–587, 2002.

    PubMed  Google Scholar 

  30. Thompson, D. C. and M. Q. Patterson. Cycle helmets and the prevention of injuries. Recommendations for competitive sport, 1998.

  31. Thompson, D. C., F. P. Rivara, and R. Thompson. Helmets for preventing head and facial injuries in bicyclists. Cochrane Database Syst. Rev. 4(2):CD001855, 1999.

    Google Scholar 

  32. Tolhurst, D. E., M. H. Carstens, R. J. Greco, and D. J. Hurwitz. The surgical anatomy of the scalp. Plast. Reconstr. Surg. 87(4):603–612, 1991.

    Article  CAS  PubMed  Google Scholar 

  33. Vardaxis, N., T. Brans, M. Boon, R. Kreis, and L. Marres. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J. Anat. 190(4):601–611, 1997.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verschueren, P. Biomechanical Analysis of Head Injuries Related to Bicycle Accidents and a New Bicycle Helmet Concept (Biomechanische analyse van hoofdletsels gerelateerd aan fietsongevallen en een nieuw fietshelmconcept), 2009.

  35. Young, R. W. Age changes in the thickness of the scalp in white males. Hum. Biol. 31(1):74–79, 1959.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the European Union’s Horizon 2020 research programme under the Marie Sklodowska – Curie Grant Agreement No. 642662. The authors would like to acknowledge KU Leuven for the use of the high speed camera and Lazer Sport for the use of the impact set-up.

Conflict of interest

The authors have no relevant conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisling Ní Annaidh.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trotta, A., Zouzias, D., De Bruyne, G. et al. The Importance of the Scalp in Head Impact Kinematics. Ann Biomed Eng 46, 831–840 (2018). https://doi.org/10.1007/s10439-018-2003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2003-0

Keywords

Navigation