Log in

Estimated Brain Tissue Response Following Impacts Associated With and Without Diagnosed Concussion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Kinematic measurements of head impacts are sensitive to sports concussion, but not highly specific. One potential reason is these measures reflect input conditions only and may have varying degrees of correlation to regional brain tissue deformation. In this study, previously reported head impact data recorded in the field from high school and collegiate football players were analyzed using two finite element head models (FEHM). Forty-five impacts associated with immediately diagnosed concussion were simulated along with 532 control impacts without identified concussion obtained from the same players. For each simulation, intracranial response measures (max principal strain, strain rate, von Mises stress, and pressure) were obtained for the whole brain and within four regions of interest (ROI; cerebrum, cerebellum, brain stem, corpus callosum). All response measures were sensitive to diagnosed concussion; however, large inter-athlete variability was observed and sensitivity strength depended on measure, ROI, and FEHM. Interestingly, peak linear acceleration was more sensitive to diagnosed concussion than all intracranial response measures except pressure. These findings suggest FEHM may provide unique and potentially important information on brain injury mechanisms, but estimations of concussion risk based on individual intracranial response measures evaluated in this study did not improve upon those derived from input kinematics alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and hybrid III headform. Ann. Biomed. Eng. 40(1):237–248, 2012.

    Article  PubMed  Google Scholar 

  2. Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. McAllister, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, P. G. Brolinson, and M. W. Collins. Head impact exposure sustained by football players on days of diagnosed concussion. Med. Sci. Sports Exerc. 45(4):737–746, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. McAllister, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, P. G. Brolinson, and M. W. Collins. Timing of concussion diagnosis is related to head impact exposure prior to injury. Med. Sci. Sports Exerc. 45(4):747–754, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Broglio, S. P., B. Schnebel, J. J. Sosnoff, S. Shin, X. Fend, X. He, and J. Zimmerman. Biomechanical properties of concussions in high school football. Med. Sci. Sports Exerc. 42(11):2064–2071, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brolinson, P. G., S. Manoogian, D. McNeely, M. Goforth, R. M. Greenwald, and S. M. Duma. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5(1):23–28, 2006.

    Article  PubMed  Google Scholar 

  6. Chu, J., J. G. Beckwith, J. J. Crisco, and R. M. Greenwald. A novel algorithm to measure linear and rotational head acceleration using single-axis accelerometers. World Congress of Biomechanics, 5th Annual. Munich, Germany. J. Biomech. 6:S534, 2006.

    Article  Google Scholar 

  7. Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126(6):849–854, 2004.

    PubMed  Google Scholar 

  8. Crisco, J. J., R. Fiore, J. G. Beckwith, J. J. Chu, P. G. Brolinson, S. Duma, T. W. McAllister, A. C. Duhaime, and R. M. Greenwald. Frequency and location of head impact exposures in individual collegiate football players. J Athl Train. 45(6):549–559, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crisco, J. J., B. J. Wilcox, J. G. Beckwith, J. J. Chu, A. C. Duhaime, S. Rowson, S. M. Duma, A. C. Maerlender, T. W. McAllister, and R. M. Greenwald. Head impact exposure in collegiate football players. J. Biomech. 44(15):2673–2678, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duhaime, A.-C., J. G. Beckwith, A. C. Maerlender, T. W. McAllister, J. J. Crisco, S. M. Duma, P. G. Brolinson, S. Rowson, L. A. Flashman, J. J. Chu, and R. M. Greenwald. Spectrum of acute clinical characteristics of diagnosed concussions in college athletes wearing instrumented helmets. J. Neurosurg. 117(6):1092–1099, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Duma, S. M., S. J. Manoogian, W. R. Bussone, P. G. Brolinson, M. W. Goforth, J. J. Donnenwerth, R. M. Greenwald, J. J. Chu, and J. J. Crisco. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15(1):3–8, 2005.

    Article  PubMed  Google Scholar 

  12. Gennarelli, T. A., L. E. Thibault, and A. K. Ommaya. Pathophysiological responses to rotational and transitional accelerations of the head. In: Stapp Car Crash Conference, pp. 296–308, 1972.

  13. Giordano, C., and S. Kleiven. Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J. 58:1–33, 2014.

    Google Scholar 

  14. Greenwald, R. M., J. T. Gwin, J. J. Chu, and J. J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62(4):789–798, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gurdjian, E. S., V. L. Roberts, and L. M. Thomas. Tolerance curves of acceleration and intracranial pressure and protective index in experimental head injury. J. Trauma 6(5):600–604, 1966.

    Article  CAS  PubMed  Google Scholar 

  16. Gurdjian, E. S., J. E. Webster, and H. R. Lissner. Observations on the mechanism of brain concussion, contusion, and laceration. Surg. Gynecol. Obstet. 101(6):680–690, 1955.

    CAS  PubMed  Google Scholar 

  17. Hernandez, F., L. C. Wu, M. C. Yip, K. Laksari, A. R. Hoffman, J. R. Lopez, G. A. Grant, S. Kleiven, and D. B. Camarillo. Six degree-of-freedom measurements of human mild traumatic brain injury. Ann. Biomed. Eng. 43(8):1918–1934, 2015.

    Article  PubMed  Google Scholar 

  18. Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42(1):11–24, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ji, S., W. Zhao, J. C. Ford, J. G. Beckwith, R. P. Bolander, R. M. Greenwald, L. A. Flashman, K. D. Paulsen, and T. McAllister. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J. Neurotrauma 32(7):441–454, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ji, S., W. Zhao, Z. Li, and T. W. McAllister. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation. Biomech. Model. Mechanobiol. 13(5):1121–1136, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kimpara, H., and M. Iwamoto. Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann. Biomed. Eng. 40(1):114–126, 2012.

    Article  PubMed  Google Scholar 

  22. King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration? In: International Research Conference on the Biomechnics of Impacts (IRCOBI). Lisbon, Portugal, pp. 1–12, 2003.

  23. Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  24. Manoogian, S., D. McNeely, S. Duma, G. Brolinson, and R. Greenwald. Head acceleration is less than 10 percent of helmet acceleration in football impacts. Biomed. Sci. Instrum. 42:383–388, 2006.

    PubMed  Google Scholar 

  25. McAllister, T. M., L. A. Flashman, A. Maerlender, R. M. Greenwald, J. G. Beckwith, T. D. Tosteson, J. J. Crisco, P. G. Brolinson, S. M. Duma, A. C. Duhaime, M. R. Grove, and J. H. Turco. Cognitive effects of one season of head impacts in a cohort of collegiate contact sport athletes. Neurology 78(22):1777–1784, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McAllister, T. M., J. C. Ford, S. Ji, J. G. Beckwith, L. A. Flashman, K. D. Paulsen, and R. M. Greenwald. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices. Ann. Biomed. Eng. 40(1):127–140, 2012.

    Article  PubMed  Google Scholar 

  27. McCrory, P., W. H. Meeuwisse, M. Aubry, B. Cantu, J. Dvorak, R. J. Echemendia, L. Engebretsen, K. Johnston, J. S. Kutcher, M. Raftery, A. Sills, B. W. Benson, G. A. Davis, R. G. Ellenbogen, K. Guskiewicz, S. A. Herring, G. L. Iverson, B. D. Jordan, J. Kissick, M. McCrea, A. S. McIntosh, D. Maddocks, M. Makdissi, L. Purcell, M. Putukian, K. Schneider, C. H. Tator, and M. Turner. Consensus statement on concussion in sport: The 4th international conference on concussion in sport held in Zurich, November 2012. Br. J. Sports Med. 47(5):250–258, 2013.

    Article  PubMed  Google Scholar 

  28. Meaney, D. F., D. H. Smith, D. I. Shreiber, A. C. Bain, R. T. Miller, D. T. Ross, and T. A. Gennarelli. Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma 12(4):689–694, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Newman, J., C. Barr, M. Beusenber, E. Fournier, N. Shewchenko, E. Welbourne, and C. Withnall. A new biomechanical assessment of mild traumatic brain injury: Part 2 - results and conclusions. In: Proceedings of the International Research Conference on the Biomechanics of Impacts (IRCOBI). Montpellier, France, pp. 223–230, 2000.

  30. Newman, J. A., M. C. Beusenberg, N. Shewchenko, C. Withnall, and E. Fournier. Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of american football helmets. J. Biomech. 38(7):1469–1481, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Patton, D. A., A. S. McIntosh, and S. Kleiven. The biomechanical determinants of concussion: Finite element simulations to investigate brain tissue deformations during sporting impacts to the unprotected head. J. Appl. Biomech. 29(6):721–730, 2013.

    Article  PubMed  Google Scholar 

  32. Rowson, S., S. M. Duma, J. G. Beckwith, J. J. Chu, R. M. Greenwald, J. J. Crisco, P. G. Brolinson, A. C. Duhaime, T. W. McAllister, and A. C. Maerlender. Rotational head kinematics in football impacts: an injury risk function for concussion. Ann. Biomed. Eng. 40(1):1–13, 2012.

    Article  PubMed  Google Scholar 

  33. Sabet, A. A., E. Christoforou, B. Zatlin, G. M. Genin, and P. V. Bayly. Deformation of the human brain induced by mild angular head acceleration. J. Biomech. 41(2):307–315, 2008.

    Article  PubMed  Google Scholar 

  34. Schnebel, B., J. T. Gwin, S. Anderson, and R. Gatlin. In vivo study of head impacts in football: a comparison of national collegiate athletic association division i versus high school impacts. Neurosurgery 60(3):490–495, 2007.

    Article  PubMed  Google Scholar 

  35. Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (simon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.

    PubMed  Google Scholar 

  36. Viano, D. C., I. R. Casson, E. J. Pellman, L. Zhang, A. I. King, and K. H. Yang. Concussion in professional football: Brain responses by finite element analysis—Part 9. Neurosurgery 57(5):891–916, 2005.

    Article  PubMed  Google Scholar 

  37. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2):226–236, 2004.

    Article  PubMed  Google Scholar 

  38. Zhao, W., Y. Cai, Z. Li, and S. Ji. Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter. Biomech. Model. Mechanobiol. 16(5):1709–1727, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by awards R01HD048638, R01NS094410, R01NS055020, R01NS092853, and R21NS088781 from the National Institutes of Health, R01CE001254 and 5R49CE000196 from the Centers for Disease Control and Prevention, and NOCSAE (07-04, 14-19). HIT System technology was developed in part under NIH R44HD40473 and research and development support from Riddell, Inc. (Chicago, IL). We thank the researchers and institutions from which the data were collected: Mike Goforth MS, ATC, Virginia Tech Sports Medicine; Dave Dieter MS, ATC, Virginia Tech Sports Medicine; Russell Fiore ATC, Brown University Sports Medicine; Bethany Wilcox PhD, Brown University; Ron Gatlin ATC, Casady HS; Jeff Frechette ATC and Scott Roy ATC, Dartmouth College Sports Medicine; Dean Kleinschmidt ATC and Brian Lund, University of Indiana Sports Medicine; Jesse Townsend ATC, Greensburg Salam HS; Jeff Cienick ATC, Blackhawk HS; John Burnett ATC, Karns City HS; Chris Ashton ATC, University of Minnesota Sports Medicine; Scott Hamilton, Unity HS; Scott Oliaro, Scott Trulock, and Doug Halverson, UNC-Chapel Hill Sports Medicine. Additionally, we would like to especially thank Lindley Brainard and Wendy Chamberlin, Simbex for coordination of data collection from Dartmouth College, Brown University, and Virginia Tech, and Rema Raman PhD and Sonia Jain PhD, University of California San Diego, for review of the statistical analysis.

Conflict of Interest

Authors Crisco, Greenwald, Chu, and Beckwith and Simbex have a financial interest in the instruments [HIT System; Sideline Response System (Riddell, Inc.)] that were used to collect the data reported in this study. The remaining authors have no financial interests associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Beckwith.

Additional information

Associate Editor Elena S. Di Martino oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckwith, J.G., Zhao, W., Ji, S. et al. Estimated Brain Tissue Response Following Impacts Associated With and Without Diagnosed Concussion. Ann Biomed Eng 46, 819–830 (2018). https://doi.org/10.1007/s10439-018-1999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-1999-5

Keywords

Navigation