Log in

Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors. GRF data, measured via the treadmill, and sensor data, measured via the NCPF inserts, were used in a tenfold cross validation process to calibrate a separate model for each individual. The calibration model estimated average anterior–posterior, mediolateral and vertical GRF with mean average errors (MAE) of 6.52 N (2.14%), 4.79 N (6.34%), and 15.4 N (2.15%), respectively. Two additional models were created using the sensor data from all subjects and subject demographics. A tenfold cross validation process for this combined data set resulted in models that estimated average anterior–posterior, mediolateral and vertical GRF with less than 8.16 N (2.41%), 6.63 N (7.37%), and 19.4 N (2.31%) errors, respectively. Intra-subject estimates based on the model had a higher accuracy than inter-subject estimates, likely due to the relatively small subject cohort used in creating the model. The novel NCPF sensors demonstrate the ability to accurately estimate 3D GRF during human movement outside of the traditional biomechanics laboratory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arendt-Nielsen, L., T. Graven-Nielsen, H. Svarrer, and P. Svensson. The influence of low back pain on muscle activity and coordination during gait: a clinical and experimental study. Pain 64:231–240, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann, J., and A. McGregor. Body-worn sensor design: what do patients and clinicians want? Ann. Biomed. Eng. 39:2299–2312, 2011.

    Article  CAS  PubMed  Google Scholar 

  3. Bilodeau, R. A., D. T. Fullwood, J. S. Colton, J. D. Yeager, A. E. Bowden, and T. Park. Evolution of nano-junctions in piezoresistive nanostrand composites. Compos. Part B 72:45–52, 2015.

    Article  Google Scholar 

  4. Bird, E. M., A. J. Merrell, B. Anderson, C. Newton, P. Rosquist, D. Fullwood, A. Bowden, and M. Seeley. Vibration monitoring via nanocomposite piezoelectric foam bushings. Smart Mater. Struct. 11:115013, 2016.

    Article  Google Scholar 

  5. Crea, S., M. Donati, S. M. M. De Rossi, C. M. Oddo, and N. Vitiello. A wireless flexible sensorized insole for gait analysis. Sensors 14:1073–1093, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D’Angelo, M. G., M. Berti, L. Piccinini, M. Romei, M. Guglieri, S. Bonato, A. Degrate, A. C. Turconi, and N. Bresolin. Gait pattern in Duchenne muscular dystrophy. Gait Posture 29:36–41, 2009.

    Article  PubMed  Google Scholar 

  7. Damiano, D. L., and M. F. Abel. Relation of gait analysis to gross motor function in cerebral palsy. Dev. Med. Child Neurol. 38:389–396, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Faber, G., C. Chang, I. Kingma, J. Dennerlein, and J. van Dieën. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 49:904–912, 2016.

    Article  CAS  PubMed  Google Scholar 

  9. Faber, G. S., I. Kingma, H. M. Schepers, P. H. Veltink, and J. H. Van Dieen. Determination of joint moments with instrumented force shoes in a variety of tasks. J. Biomech. 43:2848–2854, 2010.

    Article  PubMed  Google Scholar 

  10. Fluit, R., M. S. Andersen, S. Kolk, N. Verdonschot, and H. Koopman. Prediction of ground reaction forces and moments during various activities of daily living. J. Biomech. 47:2321–2329, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Gage, J. R. An essential tool in the treatment of cerebral palsy. Clin. Orthop. Relat. Res. 288:126–134, 1993.

    Google Scholar 

  12. Gage, J. R., P. A. Deluca, and T. S. Renshaw. Gait analysis: principles and applications. J. Bone Joint Surg. 77:1607–1623, 1995.

    Article  Google Scholar 

  13. Gaudreault, N., D. Gravel, S. Nadeau, S. Houde, and D. Gagnon. Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity. Gait Posture 32:342–347, 2010.

    Article  PubMed  Google Scholar 

  14. Giakas, G., and V. Baltzopoulos. Time and frequency domain analysis of ground reaction forces during walking: an investigation of variability and symmetry. Gait Posture 5:189–197, 1997.

    Article  Google Scholar 

  15. Givon, U., G. Zeilig, and A. Achiron. Gait analysis in multiple sclerosis: characterization of temporal–spatial parameters using GAITRite functional ambulation system. Gait Posture 29:138–142, 2009.

    Article  PubMed  Google Scholar 

  16. Howell, A. M., T. Kobayashi, H. A. Hayes, K. B. Foreman, and S. J. Bamberg. Kinetic gait analysis using a low-cost insole. IEEE Trans Biomed Eng 60:3284–3290, 2013.

    Article  PubMed  Google Scholar 

  17. Jacobs, D. A., and D. P. Ferris. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors. J. Neuroeng. Rehabil. 12:1–12, 2015.

    Article  Google Scholar 

  18. Johnson, O. K., C. J. Gardner, D. T. Fullwood, B. L. Adams, N. Hansen, and G. Hansen. The colossal piezoresistive effect in nickel nanostrand polymer composites and a quantum tunneling model. Comput. Mater. Contin. 15:87–112, 2010.

    Google Scholar 

  19. Johnson, O. K., G. C. Kaschner, T. A. Mason, D. T. Fullwood, and G. Hansen. Optimization of nickel nanocomposite for large strain sensing applications. Sens. Actuators A 166:40–47, 2011.

    Article  CAS  Google Scholar 

  20. Khurelbaatar, T., K. Kim, S. Lee, and Y. H. Kim. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait Posture 42:65–69, 2015.

    Article  PubMed  Google Scholar 

  21. Liu, T., Y. Inoue, and K. Shibata. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications. Meas. Sci. Technol. 21:085804, 2010.

    Article  Google Scholar 

  22. Liu, T., Y. Inoue, K. Shibata, K. Shiojima, and M. M. Han. Triaxial joint moment estimation using a wearable three-dimensional gait analysis system. Measurement 47:125–129, 2014.

    Article  Google Scholar 

  23. Merrell A. J., D. T. Fullwood, A. E. Bowden, T. D. Remington, D. K. Stolworthy, and A. Bilodeau. Applications of nano-composite piezoelectric foam sensors. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, pp. V001T001A024–V001T001A024, 2013.

  24. Munro, C. F., D. I. Miller, and A. J. Fuglevand. Ground reaction forces in running: a reexamination. J. Biomech. 20:147–155, 1987.

    Article  CAS  PubMed  Google Scholar 

  25. Oh, S. E., A. Choi, and J. H. Mun. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech. 46:2372–2380, 2013.

    Article  PubMed  Google Scholar 

  26. Olney, S. J., M. P. Griffin, and I. D. McBride. Multivariate examination of data from gait analysis of persons with stroke. Phys. Ther. 78:814–828, 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Olney, S. J., M. P. Grif**, T. N. Monga, and I. D. McBride. Work and power in gait of stroke patients. Knee 1:H2, 1991.

    Google Scholar 

  28. Ramanathan, A. K., P. Kiran, G. P. Arnold, W. Wang, and R. J. Abboud. Repeatability of the Pedar-X® in-shoe pressure measuring system. Foot Ankle Surg 16:70–73, 2010.

    Article  CAS  PubMed  Google Scholar 

  29. Rouhani, H., J. Favre, X. Crevoisier, and K. Aminian. Ambulatory assessment of 3D ground reaction force using plantar pressure distribution. Gait Posture 32:311–316, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Simon, S. R. Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems. J. Biomech. 37:1869–1880, 2004.

    Article  PubMed  Google Scholar 

  31. Sutherland, D. H. The evolution of clinical gait analysis part III—kinetics and energy assessment. Gait Posture 21:447–461, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Sutherland, D. H., R. Olshen, L. Cooper, M. Wyatt, J. Leach, S. Mubarak, and P. Schultz. The pathomechanics of gait in Duchenne muscular dystrophy. Dev. Med. Child Neurol. 23:3–22, 1981.

    Article  CAS  PubMed  Google Scholar 

  33. Tao, W., T. Liu, R. Zheng, and H. Feng. Gait analysis using wearable sensors. Sensors 12:2255–2283, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Team R. C. R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.r-project.org 2015.

  35. Valderrabano, V., B. M. Nigg, V. von Tscharner, D. J. Stefanyshyn, B. Goepfert, and B. Hintermann. Gait analysis in ankle osteoarthritis and total ankle replacement. Clin. Biomech. 22:894–904, 2007.

    Article  Google Scholar 

  36. Zijlmans, J., P. Poels, J. Duysens, J. Van der Straaten, T. Thien, M. Van’t Hof, H. Thijssen, and M. Horstink. Quantitative gait analysis in patients with vascular parkinsonism. Mov. Disord. 11:501–508, 1996.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grants CMMI1538447 and IIP1549719.

Conflict of interest

A Jake Merrell, Anton E. Bowden, and David T. Fullwood are listed inventors on the patent for the nanocomposite piezo-responsive foam (NCPF) sensors discussed in this paper. A. Jake Merrell is the majority owner of Nano Composite Products, which has licensed the patents related to the technology presented in this paper from Brigham Young University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton E. Bowden.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Appendix A

Appendix A

See Tables A-I, A-II, A-III and Figs. A-1, A-2, A-3, A-4, A-5, A-6, A-7, A-8, and A-9.

Figure A-1
figure 6

Graphs of 3D ground reaction force (GRF) for subject 1, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-2
figure 7

Graphs of 3D ground reaction force (GRF) for subject 2, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line)

Figure A-3
figure 8

Graphs of 3D ground reaction force (GRF) for subject 3, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-4
figure 9

Graphs of 3D ground reaction force (GRF) for subject 4, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-5
figure 10

Graphs of 3D ground reaction force (GRF) for subject 5, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-6
figure 11

Graphs of 3D ground reaction force (GRF) for subject 6, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-7
figure 12

Graphs of 3D ground reaction force (GRF) for subject 7, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-8
figure 13

Graphs of 3D ground reaction force (GRF) for subject 8, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Figure A-9
figure 14

Graphs of 3D ground reaction force (GRF) for subject 9, where the light grey lines represent each individual stance, the solid black line represents one randomly selected actual stance, and the dotted line represents the predicted curve from the Single Subject GRF model corresponding to the actual stance (black line).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosquist, P.G., Collins, G., Merrell, A.J. et al. Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking. Ann Biomed Eng 45, 2122–2134 (2017). https://doi.org/10.1007/s10439-017-1852-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1852-2

Keywords

Navigation