Log in

Contraction Induced Muscle Injury: Towards Personalized Training and Recovery Programs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Skeletal muscles can be injured by their own contractions. Such contraction-induced injury, often accompanied by delayed onset of muscle soreness, is a leading cause of the loss of mobility in the rapidly increasing population of elderly people. Unlike other types of muscle injuries which hurt almost exclusively those who are subjected to intensive exercise such as professional athletes and soldiers in training, contraction induced injury is a phenomenon which may be experienced by people of all ages while performing a variety of daily-life activities. Subjects that experience contraction induced injury report on soreness that usually increases in intensity in the first 24 h after the activity, peaks from 24 to 72 h, and then subsides and disappears in a few days. Despite their clinical importance and wide influence, there are almost no studies, clinical, experimental or computational, that quantitatively relate between the extent of contraction induced injury and activity factors, such as number of repetitions, their frequency and magnitude. The lack of such quantitative information is even more emphasized by the fact that contraction induced injury can be used, if moderate and controlled, to improve muscle performance in the long term. Thus, if properly understood and carefully implemented, contraction induced injury can be used for the purpose of personalized training and recovery programs. In this paper, we review experimental, clinical, and theoretical works, attempting towards drawing a more quantitative description of contraction induced injury and related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Eccentric contraction is a type of muscle contraction involving stretch of an activated muscle. The activated muscle is forced to lengthen since the applied load exceeds the force developed by the muscle. When this occurs, the muscle functions as an energy-absorber rather than doing work. Further information is provided in the ection on “Characteristics of contraction induced injury”.

References

  1. Abbott, B. C., and X. M. Aubert. The force exerted by active striated muscle during and after change of length. J. Physiol. 117:77–86, 1952.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Ali, K., and J. M. Leland. Hamstring strains and tears in the athlete. Clin. Sports Med. 31(2):263–272, 2012.

    PubMed  Google Scholar 

  3. Allinger, T. L., M. Epstein, and W. Herzog. Stability of muscle fibers on the descending limb of the force–length relation. A theoretical consideration. J. Biomech. 29(5):627–633, 1996.

    CAS  PubMed  Google Scholar 

  4. Balnave, C. D., and D. G. Allen. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J. Physiol. 488(Pt 1):25–36, 1995.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Balnave, C. D., and M. W. Thompson. Effect of training on eccentric exercise-induced muscle damage. J. Appl. Physiol. (Bethesda, MD.: 1985) 75(4):1545–1551, 1993.

    CAS  Google Scholar 

  6. Benichou, I., E. Faran, D. Shilo, and S. Givli. Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Appl. Phys. Lett. 102(1):011912, 2013.

    Google Scholar 

  7. Benichou, I., and S. Givli. The hidden ingenuity in titin structure. Appl. Phys. Lett. 98(9):091904, 2011.

    Google Scholar 

  8. Benichou, I., and S. Givli. Structures undergoing discrete phase transformation. J. Mech. Phys. Solids 61(1):94–113, 2013.

    Google Scholar 

  9. Boakes, J. L., J. Foran, S. R. Ward, and R. L. Lieber. Muscle adaptation by serial sarcomere addition 1 year after femoral lengthening. Clin. Orthop. Relat. Res. 456:250–253, 2007.

    PubMed  Google Scholar 

  10. Brockett, C. L., D. L. Morgan, and U. Proske. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med. Sci. Sports Exerc. 33(5):783–790, 2001.

    CAS  PubMed  Google Scholar 

  11. Brown, S. J., R. B. Child, S. H. Day, and A. E. Donnelly. Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions. J. Sports Sci. 15(2):215–222, 1997.

    CAS  PubMed  Google Scholar 

  12. Brown, L. M., and L. Hill. Some observations on variations in filament overlap in tetanized muscle-fibers and fibers stretched during a tetanus, detected in the electron-microscope after rapid fixation. J. Muscle Res. Cell Motil. 12(2):171–182, 1991.

    CAS  PubMed  Google Scholar 

  13. Butterfield, T. A., and W. Herzog. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Pflugers Arch. 451(5):688–700, 2006.

    CAS  PubMed  Google Scholar 

  14. Campbell, K. S. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLoS Comput. Biol. 5(11):e1000560, 2009.

    PubMed Central  PubMed  Google Scholar 

  15. Campbell, S. G., and K. S. Campbell. Mechanisms of residual force enhancement in skeletal muscle: insights from experiments and mathematical models. Biophys. Rev. 3(4):199–207, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Campbell, S. G., P. C. Hatfield, and K. S. Campbell. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement. PLoS Comput. Biol. 7(9):e1002156, 2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Chapin, L. M., L. T. Edgar, E. Blankman, M. C. Beckerle, and Y. T. Shiu. Mathematical modeling of the dynamic mechanical behavior of neighboring sarcomeres in actin stress fibers. Cell. Mol. Bioeng. 7(1):73–85, 2014.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen, T. C. Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. Eur. J. Appl. Physiol. 89(2):115–121, 2003.

    PubMed  Google Scholar 

  19. Chen, T. C., K. Nosaka, and P. Sacco. Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J. Appl. Physiol. (Bethesda, MD.: 1985) 102(3):992–999, 2007.

    Google Scholar 

  20. Chyan, C.-L., F.-C. Lin, H. Peng, J.-M. Yuan, C.-H. Chang, S.-H. Lin, and G. Yang. Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 87(6):3995–4006, 2004.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Clarkson, P. M., K. Nosaka, and B. Braun. Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 24(5):512–520, 1992.

    CAS  PubMed  Google Scholar 

  22. Clarkson, P. M., and I. Tremblay. Exercise-induced muscle damage, repair, and adaptation in humans. J. Appl. Physiol. (Bethesda, MD.: 1985) 65(1):1–6, 1988.

    CAS  Google Scholar 

  23. Close, G. L., A. Kayani, A. Vasilaki, and A. Mcardle. Skeletal muscle damage with exercise and aging. Sports Med. (Auckland, N.Z.) 35(5):413–427, 2005.

    Google Scholar 

  24. Cohen, T., and S. Givli. Dynamics of a discrete chain of bi-stable elements: a biomimetic shock absorbing mechanism. J. Mech. Phys. Solids 64(1):426–439, 2014.

    CAS  Google Scholar 

  25. Dayton, W. R., D. E. Goll, M. G. Zeece, R. M. Robson, and W. J. Reville. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 15(10):2150–2158, 1976.

    CAS  PubMed  Google Scholar 

  26. Denoth, J., E. Stussi, G. Csucs, and G. Danuser. Single muscle fiber contraction is dictated by inter-sarcomere dynamics. J. Theor. Biol. 216(1):101–122, 2002.

    PubMed  Google Scholar 

  27. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, S. M. Adams, S. J. Thomas, L. Satchell, A. Kumar, L. Pathmanathan, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. The tendon injury response is influenced by decorin and biglycan. Ann. Biomed. Eng. 42(3):619–630, 2014.

    PubMed  Google Scholar 

  28. Ebbeling, C. B., and P. M. Clarkson. Exercise-induced muscle damage and adaptation. Sports Med. (Auckland, N.Z.) 7(4):207–234, 1989.

    CAS  Google Scholar 

  29. Edman, K. A. P., G. Elzinga, and M. I. M. Noble. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal-muscle fibers. J. Physiol. Lond. 281:139–155, 1978.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Edman, K. A. P., G. Elzinga, and M. I. M. Noble. Residual force enhancement after stretch of contracting frog single muscle-fibers. J. Gen. Physiol. 80(5):769–784, 1982.

    CAS  PubMed  Google Scholar 

  31. Edman, K. A. P., and C. Reggiani. Redistribution of sarcomere-length during isometric contraction of frog-muscle fibers and its relation to tension creep. J. Physiol. Lond. 351:169–198, 1984.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Edwards, R. H., D. K. Hill, D. A. Jones, and P. A. Merton. Fatigue of long duration in human skeletal muscle after exercise. J. Physiol. 272(3):769–778, 1977.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Evans, W. J., C. N. Meredith, J. G. Cannon, C. A. Dinarello, W. R. Frontera, V. A. Hughes, B. H. Jones, and H. G. Knuttgen. Metabolic changes following eccentric exercise in trained and untrained men. J. Appl. Physiol. (Bethesda, MD.: 1985) 61(5):1864–1868, 1986.

    CAS  Google Scholar 

  34. Faulkner, J. A., L. M. Larkin, D. R. Claflin, and S. V. Brooks. Age-related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 34(11):1091–1096, 2007.

    CAS  PubMed  Google Scholar 

  35. Foley, J. M., R. C. Jayaraman, B. M. Prior, J. M. Pivarnik, and R. A. Meyer. MR measurements of muscle damage and adaptation after eccentric exercise. J. Appl. Physiol. 87(6):2311–2318, 1985.

    Google Scholar 

  36. Friden, J., and R. L. Lieber. Segmental muscle fiber lesions after repetitive eccentric contractions. Cell Tissue Res. 293(1):165–171, 1998.

    CAS  PubMed  Google Scholar 

  37. Friden, J., and R. L. Lieber. Serum creatine kinase level is a poor predictor of muscle function after injury. Scand. J. Med. Sci. Sports 11(2):126–127, 2001.

    CAS  PubMed  Google Scholar 

  38. Friden, J., M. Sjostrom, and B. Ekblom. A morphological-study of delayed muscle soreness. Experientia 37(5):506–507, 1981.

    CAS  PubMed  Google Scholar 

  39. Friden, J., M. Sjostrom, and B. Ekblom. Myofibrillar damage following intense eccentric exercise in man. Int. J. Sports Med. 4(3):170–176, 1983.

    CAS  PubMed  Google Scholar 

  40. Gerber, J. P., R. L. Marcus, L. E. Dibble, and P. C. Lastayo. The use of eccentrically biased resistance exercise to mitigate muscle impairments following anterior cruciate ligament reconstruction: a short review. Sports Health Multidiscip. Approach 1(1):31–38, 2009.

    Google Scholar 

  41. Givli, S. Towards multi-scale modeling of muscle fibers with sarcomere non-uniformities. J. Theor. Biol. 264:882–892, 2010.

    PubMed  Google Scholar 

  42. Givli, S., and K. Bhattacharya. A coarse-grained model of the myofibril: overall dynamics and the evolution of sarcomere non-uniformities. J. Mech. Phys. Solids 57(2):221–243, 2009.

    Google Scholar 

  43. Givli, S., G. Domeshek. On the role of sarcomere non-uniformity in residual force enhancement. In: 8th European Solids Mechanics Symposium (ESMC-12), Graz, Austria, 2012.

  44. Göktepe, S., O. J. Abilez, K. K. Parker, and E. Kuhl. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265(3):433–442, 2010.

    PubMed  Google Scholar 

  45. Gordon, A. M., A. F. Huxley, and F. J. Julian. Variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. Lond. 184(1):170–192, 1966.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Gordon, A. M., A. F. Huxley, and F. J. Julian. Tension development in highly stretched vertebrate muscle fibres. J. Physiol. Lond. 184(1):143–169, 1966.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Gross, P., N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman, and G. J. L. Wuite. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 7(9):731–736, 2011.

    CAS  Google Scholar 

  48. Herzog, W., E. J. Lee, and D. E. Rassier. Residual force enhancement in skeletal muscle. J. Physiol. Lond. 574(3):635–642, 2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Herzog, W., and T. R. Leonard. The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J. Biomech. 33(5):531–542, 2000.

    CAS  PubMed  Google Scholar 

  50. Herzog, W., and T. R. Leonard. Force enhancement following stretching of skeletal muscle: a new mechanism. J. Exp. Biol. 205(9):1275–1283, 2002.

    CAS  PubMed  Google Scholar 

  51. Herzog, W., and T. Leonard. Reply from Walter Herzog (on behalf of the authors) and Tim Leonard. J. Physiol. Lond. 578(2):617–620, 2007.

    CAS  Google Scholar 

  52. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B 126(843):136–195, 1938.

    Google Scholar 

  53. Hirose, L., K. Nosaka, M. Newton, A. Laveder, M. Kano, J. Peake, and K. Suzuki. Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exerc. Immunol. Rev. 10:75–90, 2004.

    PubMed  Google Scholar 

  54. Howatson, G., and K. A. Van Someren. Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur. J. Appl. Physiol. 101(2):207–214, 2007.

    CAS  PubMed  Google Scholar 

  55. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7:255–318, 1957.

    CAS  Google Scholar 

  56. Ingalls, C. P., G. L. Warren, J. H. Williams, C. W. Ward, and R. B. Armstrong. E–C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J. Appl. Physiol. (Bethesda, MD.: 1985) 85(1):58–67, 1998.

    CAS  Google Scholar 

  57. Ingalls, C. P., J. C. Wenke, T. Nofal, and R. B. Armstrong. Adaptation to lengthening contraction-induced injury in mouse muscle. J. Appl. Physiol. (Bethesda, MD.: 1985) 97(3):1067–1076, 2004.

    Google Scholar 

  58. Irving, M., G. Piazzesi, L. Lucii, Y. B. Sun, J. J. Harford, I. M. Dobbie, M. A. Ferenczi, M. Reconditi, and V. Lombardi. Conformation of the myosin motor during force generation in skeletal muscle. Nat. Struct. Biol. 7(6):482–485, 2000.

    CAS  PubMed  Google Scholar 

  59. Iwazumi, T., and G. H. Pollack. The effect of sarcomere nonuniformity on the sarcomere length-tension relationship of skinned fibers. J. Cell. Physiol. 106(3):321–337, 1981.

    CAS  PubMed  Google Scholar 

  60. Jamurtas, A. Z., V. Theocharis, T. Tofas, A. Tsiokanos, C. Yfanti, V. Paschalis, Y. Koutedakis, and K. Nosaka. Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur. J. Appl. Physiol. 95(2–3):179–185, 2005.

    PubMed  Google Scholar 

  61. Janssen, I., S. B. Heymsfield, Z. Wang, and R. Ross. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89(1):81–88, 2000.

    CAS  PubMed  Google Scholar 

  62. Jarvinen, T. A., T. L. Jarvinen, M. Kaariainen, H. Kalimo, and M. Jarvinen. Muscle injuries: biology and treatment. Am. J. Sports Med. 33(5):745–764, 2005.

    PubMed  Google Scholar 

  63. Julian, F. J., and D. L. Morgan. Effect on tension of nonuniform distribution of length changes applied to frog-muscle fibers. J. Physiol. Lond. 293:379–392, 1979.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Julian, F. J., M. R. Sollins, and R. L. Moss. Sarcomere length nonuniformity in relation to tetanic responses of stretched skeletal-muscle fibers. Proc. R. Soc. Lond. Ser. B 200(1138):109–116, 1978.

    CAS  Google Scholar 

  65. Katz, B. The relation between force and speed in muscular contraction. J. Physiol. Lond. 96(1):45–64, 1939.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Katz, J., and R. Melzack. Measurement of pain. Surg. Clin. N. Am. 79(2):231–252, 1999.

    CAS  PubMed  Google Scholar 

  67. Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer, 1998.

    Google Scholar 

  68. Kerckhoffs, R. C. P. Computational modeling of cardiac growth in the post-natal rat with a strain-based growth law. J. Biomech. 45(5):865–871, 2012.

    PubMed Central  PubMed  Google Scholar 

  69. Kerckhoffs, R. C. P., J. H. Omens, and A. D. Mcculloch. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech. Res. Commun. 42:40–50, 2012.

    PubMed Central  PubMed  Google Scholar 

  70. Khattak, M. J., T. Ahmad, R. Rehman, M. Umer, S. H. Hasan, and M. Ahmed. Muscle healing and nerve regeneration in a muscle contusion model in the rat. J. Bone Jt. Surg. Br. 92-B(6):894–899, 2010.

    Google Scholar 

  71. Koh, T. J. Physiology and mechanisms of skeletal muscle damage. In: Skeletal Muscle Damage and Repair, edited by P. M. Tiidus. Champaign, IL: Human Kinetics, 2008, Chptr 1.

  72. Koh, T. J., and S. V. Brooks. Lengthening contractions are not required to induce protection from contraction-induced muscle injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281(1):R155–R161, 2001.

    CAS  PubMed  Google Scholar 

  73. Lapier, T. K., H. W. Burton, R. Almon, and F. Cerny. Alterations in intramuscular connective tissue after limb casting affect contraction-induced muscle injury. J. Appl. Physiol. (Bethesda, MD.: 1985) 78(3):1065–1069, 1995.

    CAS  Google Scholar 

  74. Lavender, A. P., and K. Nosaka. A light load eccentric exercise confers protection against a subsequent bout of more demanding eccentric exercise. J. Sci. Med. Sport/Sports Med. Aust. 11(3):291–298, 2008.

    Google Scholar 

  75. Leonard, T. R., M. Duvall, and W. Herzog. Force enhancement following stretch in a single sarcomere. Am. J. Physiol. Cell Physiol. 299(6):C1398–C1401, 2010.

    CAS  PubMed  Google Scholar 

  76. Lieber, R. L. Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation. Baltimore, MD: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  77. Lieber, R. L., and J. Friden. Selective damage of fast glycolytic muscle fibres with eccentric contraction of the rabbit tibialis anterior. Acta Physiol. Scand. 133(4):587–588, 1988.

    CAS  PubMed  Google Scholar 

  78. Lieber, R. L., M. C. Schmitz, D. K. Mishra, and J. Friden. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J. Appl. Physiol. (Bethesda, MD.: 1985) 77(4):1926–1934, 1994.

    CAS  Google Scholar 

  79. Lieber, R. L., L. E. Thornell, and J. Friden. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J. Appl. Physiol. (Bethesda, MD.: 1985) 80(1):278–284, 1996.

    CAS  Google Scholar 

  80. Lieber, R. L., T. M. Woodburn, and J. Friden. Muscle damage induced by eccentric contractions of 25% strain. J. Appl. Physiol. (Bethesda, MD.: 1985) 70(6):2498–2507, 1991.

    CAS  Google Scholar 

  81. Lombardi, V., and G. Piazzesi. The contractile response during steady lengthening of stimulated frog-muscle fibers. J. Physiol. Lond. 431:141–171, 1990.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Lombardi, V., G. Piazzesi. Force response in steady lengthening of active single muscle fibres. In: Muscular Contraction, edited by R. M. Simmons. Cambridge: Cambridge university press, 1992, Chptr 16.

  83. Lynn, R., and D. L. Morgan. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J. Appl. Physiol. (Bethesda, MD.: 1985) 77(3):1439–1444, 1994.

    CAS  Google Scholar 

  84. Manfredi, T. G., R. A. Fielding, K. P. O’reilly, C. N. Meredith, H. Y. Lee, and W. J. Evans. Plasma creatine kinase activity and exercise-induced muscle damage in older men. Med. Sci. Sports Exerc. 23(9):1028–1034, 1991.

    CAS  PubMed  Google Scholar 

  85. Marcus, R. L., S. Smith, G. Morrell, O. Addison, L. E. Dibble, D. Wahoff-Stice, and P. C. Lastayo. Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Phys. Ther. 88(11):1345–1354, 2008.

    PubMed Central  PubMed  Google Scholar 

  86. Mccully, K. K., and J. A. Faulkner. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. (Bethesda, MD.: 1985) 59(1):119–126, 1985.

    CAS  Google Scholar 

  87. Mccully, K. K., and J. A. Faulkner. Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. Jo. Appl. physiol. (Bethesda, MD.: 1985) 61(1):293–299, 1986.

    CAS  Google Scholar 

  88. Mchugh, M. P. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand. J. Med. Sci. Sports 13(2):88–97, 2003.

    PubMed  Google Scholar 

  89. Mchugh, M. P., and S. Pasiakos. The role of exercising muscle length in the protective adaptation to a single bout of eccentric exercise. Eur. J. Appl. Physiol. 93(3):286–293, 2004.

    PubMed  Google Scholar 

  90. Melzack, R. Recent concepts of pain. J. Med. 13(3):147–160, 1982.

    CAS  PubMed  Google Scholar 

  91. Meyer, G. A., B. Kiss, S. R. Ward, D. L. Morgan, M. S. Z. Kellermayer, and R. L. Lieber. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics. Biophys. J. 98(2):258–266, 2010.

    PubMed Central  PubMed  Google Scholar 

  92. Mikesky, A. E., A. Meyer, and K. L. Thompson. Relationship between quadriceps strength and rate of loading during gait in women. J. Orthop. Res. 18(2):171–175, 2000.

    CAS  PubMed  Google Scholar 

  93. Minozzo, F. C., and C. A. B. De Lira. Muscle residual force enhancement: a brief review. Clinics 68(2):269–274, 2013.

    PubMed Central  PubMed  Google Scholar 

  94. Morgan, D. L. New insights into the behavior of muscle during active lengthening. Biophys. J . 57(2):209–221, 1990.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Morgan, D. L., and D. G. Allen. Early events in stretch-induced muscle damage. J. Appl. Physiol. 87(6):2007–2015, 1999.

    CAS  PubMed  Google Scholar 

  96. Morgan, D. L., S. Mochon, and F. J. Julian. A quantitative model of inter-sarcomere dynamics during fixed-end contractions of single frog-muscle fibers. Biophys. J. 39(2):189–196, 1982.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Morgan, D. L., and U. Proske. Can all residual force enhancement be explained by sarcomere non-uniformities? J. Physiol. Lond. 578(2):613–615, 2007.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Müller, I., and P. Villaggio. A model for an elastic–plastic body. Arch. Ration. Mech. Anal. 65(1):25–46, 1977.

    Google Scholar 

  99. Mutungi, G., and K. W. Ranatunga. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres. J. Muscle Res. Cell Motil. 21(6):565–575, 2000.

    CAS  PubMed  Google Scholar 

  100. Newham, D. J., D. A. Jones, and P. M. Clarkson. Repeated high-force eccentric exercise: effects on muscle pain and damage. J. Appl. Physiol. (Bethesda, MD.: 1985) 63(4):1381–1386, 1987.

    CAS  Google Scholar 

  101. Newham, D. J., G. Mcphail, K. R. Mills, and R. H. Edwards. Ultrastructural changes after concentric and eccentric contractions of human muscle. J. Neurol. Sci. 61(1):109–122, 1983.

    CAS  PubMed  Google Scholar 

  102. Newham, D. J., K. R. Mills, B. M. Quigley, and R. H. Edwards. Pain and fatigue after concentric and eccentric muscle contractions. Clin. Sci. (London, England: 1979) 64(1):55–62, 1983.

    CAS  Google Scholar 

  103. Newton, M. J., P. Sacco, D. Chapman, and K. Nosaka. Do dominant and non-dominant arms respond similarly to maximal eccentric exercise of the elbow flexors? J. Sci. Med. Sport/Sports Med. Aust. 16(2):166–171, 2013.

    Google Scholar 

  104. Nosaka, K. Muscle soreness and damage and the repeated-bout effect. In: Skeletal Muscle Damage and Repair, edited by P.M. Tiidus. Champaign, IL: Human Kinetics, 2008, Chptr 5.

  105. Nosaka, K., P. M. Clarkson, M. E. Mcguiggin, and J. M. Byrne. Time course of muscle adaptation after high force eccentric exercise. Eur. J. Appl. Physiol. 63(1):70–76, 1991.

    CAS  Google Scholar 

  106. Nosaka, K., and M. Newton. Repeated eccentric exercise bouts do not exacerbate muscle damage and repair. J. Strength Cond. Res./Natl. Strength Cond. Assoc. 16(1):117–122, 2002.

    Google Scholar 

  107. Nosaka, K., and M. Newton. Is recovery from muscle damage retarded by a subsequent bout of eccentric exercise inducing larger decreases in force? J. Sci. Med. Sport/Sports Med. Aust. 5(3):204–218, 2002.

    CAS  Google Scholar 

  108. Nosaka, K., M. Newton, and P. Sacco. Responses of human elbow flexor muscles to electrically stimulated forced lengthening exercise. Acta Physiol. Scand. 174(2):137–145, 2002.

    CAS  PubMed  Google Scholar 

  109. Nosaka, K., M. J. Newton, and P. Sacco. Attenuation of protective effect against eccentric exercise-induced muscle damage. Can. J. Appl. Physiol. Revue Canadienne de Physiologie Appliquee 30(5):529–542, 2005.

    Google Scholar 

  110. Nosaka, K., M. Newton, P. Sacco, D. Chapman, and A. Lavender. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med. Sci. Sports Exerc. 37(5):746–753, 2005.

    PubMed  Google Scholar 

  111. Nosaka, K., K. Sakamoto, M. Newton, and P. Sacco. The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. Eur. J. Appl. Physiol. 85(1–2):34–40, 2001.

    CAS  PubMed  Google Scholar 

  112. Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319(2):433–447, 2002.

    CAS  PubMed  Google Scholar 

  113. O’reilly, K. P., M. J. Warhol, R. A. Fielding, W. R. Frontera, C. N. Meredith, and W. J. Evans. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J. Appl. Physiol. (Bethesda, MD.: 1985) 63(1):252–256, 1987.

    Google Scholar 

  114. Panchangam, A., and W. Herzog. Sarcomere overextension reduces stretch-induced tension loss in myofibrils of rabbit psoas. J. Biomech. 44(11):2144–2149, 2011.

    PubMed  Google Scholar 

  115. Paschalis, V., G. Giakas, V. Baltzopoulos, A. Z. Jamurtas, V. Theoharis, C. Kotzamanidis, and Y. Koutedakis. The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture 25(2):236–242, 2007.

    PubMed  Google Scholar 

  116. Pate, E., and R. Cooke. A model of crossbridge action—the effects of Atp, Adp and Pi. J. Muscle Res. Cell Motil. 10(3):181–196, 1989.

    CAS  PubMed  Google Scholar 

  117. Philippou, A., G. C. Bogdanis, A. M. Nevill, and M. Maridaki. Changes in the angle-force curve of human elbow flexors following eccentric and isometric exercise. Eur. J. Appl. Physiol. 93(1–2):237–244, 2004.

    PubMed  Google Scholar 

  118. Pizza, F. X., D. Cavender, A. Stockard, H. Baylies, and A. Beighle. Anti-inflammatory doses of ibuprofen: effect on neutrophils and exercise-induced muscle injury. Int. J. Sports Med. 20(2):98–102, 1999.

    CAS  PubMed  Google Scholar 

  119. Pizza, F. X., T. J. Koh, S. J. Mcgregor, and S. V. Brooks. Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J. Appl. Physiol. (Bethesda, MD.: 1985) 92(5):1873–1878, 2002.

    Google Scholar 

  120. Puglisi, G., and L. Truskinovsky. A mechanism of transformational plasticity. Continuum Mech. Thermodyn. 14(5):437–457, 2002.

    Google Scholar 

  121. Rassier, D. E. The mechanisms of the residual force enhancement after stretch of skeletal muscle: non-uniformity in half-sarcomeres and stiffness of titin. Proc. R. Soc. B 279(1739):2705–2713, 2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112, 1997.

    CAS  PubMed  Google Scholar 

  123. Sacco, P., and D. A. Jones. The protective effect of damaging eccentric exercise against repeated bouts of exercise in the mouse tibialis anterior muscle. Exp. Physiol. 77(5):757–760, 1992.

    CAS  PubMed  Google Scholar 

  124. Salinas, G., S. Givli. Can a curved beam bistable mechanism have a secondary equilibrium that is more stable than its stress-free configuration? Microsyst. Technol. 2014. doi:10.1007/s00542-014-2195-7

  125. Sam, M., S. Shah, J. Friden, D. J. Milner, Y. Capetanaki, and R. L. Lieber. Desmin knockout muscles generate lower stress and are less vulnerable to injury compared with wild-type muscles. Am. J. Physiol. Cell Physiol. 279(4):1116–1122, 2000.

    Google Scholar 

  126. Sayers, S. P., M. J. Hubal. Histological, chemical, and functional manifestations of muscle damage. In: Skeletal Muscle Damage and Repair, edited by P. M. Tiidus. Champaign, IL: Human Kinetics, 2008, Chptr 3.

  127. Sayers, S. P., B. T. Peters, C. A. Knight, M. L. Urso, J. Parkington, and P. M. Clarkson. Short-term immobilization after eccentric exercise. Part I: contractile properties. Med. Sci. Sports Exerc. 35(5):753–761, 2003.

    PubMed  Google Scholar 

  128. Schachar, R., W. Herzog, and T. R. Leonard. Force enhancement above the initial isometric force on the descending limb of the force-length relationship. J. Biomech. 35(10):1299–1306, 2002.

    CAS  PubMed  Google Scholar 

  129. Seelecke, S., S.-J. Kim, B. Ball, and R. Smith. A rate-dependent two-dimensional free energy model for ferroelectric single crystals. Continuum Mech. Thermodyn. 17(4):337–350, 2005.

    CAS  Google Scholar 

  130. Shah, S. B., F. C. Su, K. Jordan, D. J. Milner, J. Friden, Y. Capetanaki, and R. L. Lieber. Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. J. Exp. Biol. 205(Pt 3):321–325, 2002.

    PubMed  Google Scholar 

  131. Souza, J. D., and C. Gottfried. Muscle injury: review of experimental models. J. Electromyogr. Kinesiol. 23(6):1253–1260, 2013.

    PubMed  Google Scholar 

  132. Stehle, R., M. Kruger, and G. Pfitzer. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid Ca2+ changes. Biophys. J . 83(4):2152–2161, 2002.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Stoecker, U., I. A. Telley, E. Stussi, and J. Denoth. A multisegmental cross-bridge kinetics model of the myofibril. J. Theor. Biol. 259:714–726, 2009.

    CAS  PubMed  Google Scholar 

  134. Stupka, N., S. Lowther, K. Chorneyko, J. M. Bourgeois, C. Hogben, and M. A. Tarnopolsky. Gender differences in muscle inflammation after eccentric exercise. J. Appl. Physiol. 89(6):2325–2332, 2000.

    CAS  PubMed  Google Scholar 

  135. Sun, Q. P., and Y. J. He. A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int. J. Solids Struct. 45(13):3868–3896, 2008.

    CAS  Google Scholar 

  136. Takekura, H., N. Fu**ami, T. Nishizawa, H. Ogasawara, and N. Kasuga. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J. Physiol. 533(Pt 2):571–583, 2001.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Talag, T. S. Residual muscular soreness as influenced by concentric, eccentric, and static contractions. Res. Q. 44(4):458–469, 1973.

    CAS  PubMed  Google Scholar 

  138. Talbot, J. A., and D. L. Morgan. Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch. J. Muscle Res. Cell Motil. 17(2):261–268, 1996.

    CAS  PubMed  Google Scholar 

  139. Telley, I. A., and J. Denoth. Sarcomere dynamics during muscular contraction and their implications to muscle function. J. Muscle Res. Cell Motil. 28(1):89–104, 2007.

    PubMed  Google Scholar 

  140. Telley, I. A., J. Denoth, and K. W. Ranatunga. Inter-sarcomere dynamics in muscle fibres—a neglected subject ? Adv. Exp. Med. Biol. 538:481–500, 2003.

    CAS  PubMed  Google Scholar 

  141. Telley, I. A., R. Stehle, K. W. Ranatunga, G. Pfitzer, E. Stussi, and J. Denoth. Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no ‘sarcomere pop**’. J. Physiol. Lond. 573(1):173–185, 2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Thelen, D. G., E. S. Chumanov, T. M. Best, S. C. Swanson, and B. C. Heiderscheit. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med. Sci. Sports Exerc. 37(11):1931–1938, 2005.

    PubMed  Google Scholar 

  143. Thelen, D. G., E. S. Chumanov, D. M. Hoerth, T. M. Best, S. C. Swanson, L. Li, M. Young, and B. C. Heiderscheit. Hamstring muscle kinematics during treadmill sprinting. Med. Sci. Sports Exerc. 37(1):108–114, 2005.

    PubMed  Google Scholar 

  144. Turner, N. J., J. S. Badylak, D. J. Weber, and S. F. Badylak. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 176(2):490–502, 2012.

    CAS  PubMed  Google Scholar 

  145. Wang, Z.-J., Q.-J. Li, Z.-W. Shan, J. Li, J. Sun, and E. Ma. Sample size effects on the large strain bursts in submicron aluminum pillars. Appl. Phys. Lett. 100(7):071906, 2012.

    Google Scholar 

  146. Warren, G. L., K. M. Hermann, C. P. Ingalls, M. R. Masselli, and R. B. Armstrong. Decreased EMG median frequency during a second bout of eccentric contractions. Med. Sci. Sports Exerc. 32(4):820–829, 2000.

    CAS  PubMed  Google Scholar 

  147. Warren, G. L., D. A. Lowe, and R. B. Armstrong. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. (Auckland, N.Z.) 27(1):43–59, 1999.

    CAS  Google Scholar 

  148. Warren, G. L., D. A. Lowe, D. A. Hayes, C. J. Karwoski, B. M. Prior, and R. B. Armstrong. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J. Physiol. 468:487–499, 1993.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Williams, P. E., and G. Goldspink. Longitudinal growth of striated muscle fibres. J. Cell Sci. 9(3):751–767, 1971.

    CAS  PubMed  Google Scholar 

  150. Williams, G. N., M. J. Higgins, and M. D. Lewek. Aging skeletal muscle: physiologic changes and the effects of training. Phys. Ther. 82(1):62–68, 2002.

    PubMed  Google Scholar 

  151. Yeung, E. W., C. D. Balnave, H. J. Ballard, J. P. Bourreau, and D. G. Allen. Development of T-tubular vacuoles in eccentrically damaged mouse muscle fibres. J. Physiol. 540(Pt 2):581–592, 2002.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Yu, J. G., L. Carlsson, and L. E. Thornell. Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochem. Cell Biol. 121(3):219–227, 2004.

    CAS  PubMed  Google Scholar 

  153. Yu, J. G., C. Malm, and L. E. Thornell. Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem. Cell Biol. 118(1):29–34, 2002.

    CAS  PubMed  Google Scholar 

  154. Zahalak, G. I. Can muscle fibers be stable on the descending limbs of their sarcomere length-tension relations? J. Biomech. 30(11–12):1179–1182, 1997.

    CAS  PubMed  Google Scholar 

  155. Zöllner, A. M., O. J. Abilez, M. Böl, and E. Kuhl. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS ONE 7(10):e45661, 2012.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefi Givli.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Givli, S. Contraction Induced Muscle Injury: Towards Personalized Training and Recovery Programs. Ann Biomed Eng 43, 388–403 (2015). https://doi.org/10.1007/s10439-014-1173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1173-7

Keywords

Navigation