Log in

Investigation of hysteresis effect of cavitating flow over a pitching Clark-Y hydrofoil

绕振荡Clark-Y水翼空化迟滞特性研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The objective of this paper is to investigate the hysteresis effect of cavitating flow over a Clark-Y hydrofoil undergoing a transient pitching motion at Reynolds number Re = 4.55×105, cavitation number σ = 1.33, pitching frequency f*= 2 Hz via combined experimental and numerical studies. A hysteresis phenomenon is observed in the hydrodynamic curve and cavity area in increasing and decreasing of the angle of attack α. The hydrodynamic curves are divided into three regions: Regions A, B and C. For Region A, the lift coefficient of downstroke is lower than that of the upstroke, and the lift coefficient curve of the downstroke is more unstable. The formation and development of counterclockwise trailing edge vortex (TEV) are responsible for the decline and fluctuation of lift during the downstroke, thus leading to the increase of the hysteresis loop. Compared with the upstroke, the hydrodynamic curve in downstroke is shifted laterally to some extent in Region B. The delay effect is the main factor leading to the shift of the hydrodynamic curve, which corresponds to the minimum hysteresis loop. In Region C, the hysteresis loop is maximum and the evolution trend of the hydrodynamic curve is peak-valley opposites. When the direction of oscillation changes, the detachment and dwell time of the cavity are advanced, thus leading to the difference of hydrodynamic curve and the increase of hysteresis loop.

摘要

本文针对Clark-Y水翼在雷诺数为Re=4.55×105, 空化数为σ=1.33, 振荡频率为f*=2 Hz时的空化迟滞特性开展试验与数值研究. 实验结果发现, 绕振荡水翼的水动力特性和空化面积存在显著的迟滞现象. 根据升力系数演化特征, 将其划分为区域A、 区域B和区域C三部分. 对于区域A, 下行程的升力系数低于上行程, 且曲线上下波动较为明显. 分析发现逆时针尾缘涡的形成与发展是导致下行程升力系数下降和波动的主要因素, 进而促使滞环的形成. 在区域B中, 下行程的升力系数曲线相对上行程发生一定程度地**移. 延迟效应是动力曲线**移的主要原因, 进而形成较小的滞环面积. 对于区域C, 曲线滞环面积是最大的, 且上下行程的升力系数演化曲线呈现峰谷相对的趋势. 结果发现水翼在下行程阶段, 攻角逐渐减小, 空化分离和停留时间被提前, 进而导致水动力曲线的差异和滞环面积的增大.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Guo, J. Yang, Z. Gao, T. Moan, and H. Lu, The surface wave effects on the performance and the loading of a tidal turbine, Ocean Eng. 156, 120 (2018).

    Article  Google Scholar 

  2. D. J. Li, F. J. Li, Y. Z. Shi, J. J. Dang, and K. Luo, A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles, Ocean Eng. 215, 107894 (2020).

    Article  Google Scholar 

  3. B. Stafford, and N. Osborne, Technology development for steering and stabilizers, Proc. Instit. Mech. Eng. Part M-J. Eng. Maritime Environ. 222, 41 (2008).

    Article  Google Scholar 

  4. N. M. Nouri, and S. Mohammadi, Numerical investigation of the effects of camber ratio on the hydrodynamic performance of a marine propeller, Ocean Eng. 148, 632 (2017).

    Article  Google Scholar 

  5. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).

    MATH  Google Scholar 

  6. D. Ju, C. **ang, Z. Wang, J. Li, and N. **ao, Flow structures and hydrodynamics of unsteady cavitating flows around hydrofoil at various angles of attack, J. Hydrodyn. 30, 276 (2018).

    Article  Google Scholar 

  7. L. Li, Z. Wang, X. Li, Y. Wang, and Z. Zhu, Very large Eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model, China Ocean Eng. 35, 361 (2021).

    Article  Google Scholar 

  8. H. Hu, Z. Yang, H. Igarashi, and M. Martin, An experimental study of stall hysteresis of a low-reynolds-number airfoil, Int. J. Aerospace Lightweight Struct. (IJALS) 01, 221 (2011).

    Article  Google Scholar 

  9. N. Benard, L. N. Cattafesta Iii, E. Moreau, J. Griffin, and J. P. Bonnet, On the benefits of hysteresis effects for closed-loop separation control using plasma actuation, Phys. Fluids 23, 083601 (2011).

    Article  Google Scholar 

  10. C. Zhu, Y. Qiu, and T. Wang, Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study, Energy 222, 120004 (2021).

    Article  Google Scholar 

  11. W. J. McCroskey, and J. J. Philippe, Unsteady viscous flow on oscillating airfoils, AIAA J. 13, 71 (1975).

    Article  Google Scholar 

  12. W. J. McCroskey, Unsteady airfoils, Annu. Rev. Fluid Mech. 14, 285 (1982).

    Article  Google Scholar 

  13. X. An, L. Grimaud, and D. R. Williams, Feedforward Control of Lift Hysteresis during Periodic and Random Pitching Maneuvers (Springer International Publishing, Heidelberg, 2015), pp. 55–69.

    Google Scholar 

  14. D. R. Williams, X. An, S. Iliev, R. King, and F. Reißner, Dynamic hysteresis control of lift on a pitching wing, Exp. Fluids 56, 112 (2015).

    Article  Google Scholar 

  15. C. C. Hu, J. J. Miau, and J. H. Chou, On the hysteresis of vortex shedding in a periodically-varying flow, Fluid Dyn. Res. 35, 409 (2004).

    Article  Google Scholar 

  16. X. Shao, X. Zhang, and Z. Yu, Numerical studies of the hysteresis in locomotion of a passively pitching foil, J. Hydrodyn. 28, 359 (2016).

    Article  Google Scholar 

  17. K. Lu, Y. H. **e, D. Zhang, and J. B. Lan, Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil, J. Fluids Struct. 39, 76 (2013).

    Article  Google Scholar 

  18. A. Amini, M. Reclari, T. Sano, M. Iino, M. Dreyer, and M. Farhat, On the physical mechanism of tip vortex cavitation hysteresis, Exp. Fluids 60, 118 (2019).

    Article  Google Scholar 

  19. M. G. De Giorgi, D. Fontanarosa, and A. Ficarella, Characterization of unsteady cavitating flow regimes around a hydrofoil, based on an extended Schnerr-Sauer model coupled with a nucleation model, Int. J. Multiphase Flow 115, 158 (2019).

    Article  MathSciNet  Google Scholar 

  20. M. Liu, L. Tan, and S. Cao, Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil, Renew. Energy 139, 214 (2019).

    Article  Google Scholar 

  21. M. G. De Giorgi, A. Ficarella, and D. Fontanarosa, Numerical investigation of nonisothermal cavitating flows on hydrofoils by means of an extended Schnerr-Sauer model coupled with a nucleation model, J. Eng. Gas Turbines Power 142, 041003 (2020).

    Article  Google Scholar 

  22. M. Liu, L. Tan, and S. Cao, Cavitation-Vortex-Turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ale15 by large eddy simulation, J. Fluids Eng. 141, 021103 (2018).

    Article  Google Scholar 

  23. H. Zhang, Y. Liu, and B. Wang, Spatial-temporal features of the coherent structure of sheet/cloud cavitation flows using a frequency-weighted dynamic mode decomposition approach, Phys. Fluids 33, 053317 (2021).

    Article  Google Scholar 

  24. D. P. Hart, C. E. Brennen, and A. J. Acosta, in Observations of cavitation on a three-dimensional oscillating hydrofoil: Proceedings of the ASME Cavitation and Multiphase Flow Forum, 98, 49–52 (1990).

  25. M. Murayama, Y. Yoshida, and Y. Tsujimoto, Unsteady tip leakage vortex cavitation originating from the tip clearance of an oscillating hydrofoil, J. Fluids Eng. 128, 421 (2006).

    Article  Google Scholar 

  26. S. Seyfi, and N. M. Nouri, Experimental studies of hysteresis behavior of partial cavitation around NACA0015 hydrofoil, Ocean Eng. 217, 107482 (2020).

    Article  Google Scholar 

  27. K. Mahalatkar, J. Litzler, K. Ghia, and U. Ghia, in Cavitating multiphase flow over oscillating hydrofoils: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, Reston, 2006).

    Book  Google Scholar 

  28. B. Huang, A. Ducoin, and Y. L. Young, Physical and numerical investigation of cavitating flows around a pitching hydrofoil, Phys. Fluids 25, 102109 (2013).

    Article  Google Scholar 

  29. F. R. Menter, Improved two-equation k-w turbulence models for aerodynamic flows, NASA Tech. Memorandu 34, 103975 (1992).

    Google Scholar 

  30. F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker, A correlation-based transition model using local variables—Part I: Model formulation, J. Turbomach. 128, 413 (2006).

    Article  Google Scholar 

  31. O. Coutier-Delgosha, R. Fortes-Patella, and J. L. Reboud, Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation, J. Fluids Eng. 125, 38 (2003).

    Article  Google Scholar 

  32. Q. Wu, B. Huang, and G. Wang, Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil, Acta Mech. Sin. 32, 64 (2016).

    Article  MathSciNet  Google Scholar 

  33. C. L. Merkle, J. Feng, P. E. O. Buelow, in Computational modeling of the dynamics of sheet cavitation, Proceedings of 3rd International Symposium on Cavitation, Grenoble, 1998.

  34. I. Senocak, and W. Shyy, A pressure-based method for turbulent cavitating flow computations, J. Comput. Phys. 176, 363 (2002).

    Article  Google Scholar 

  35. M. Zhang, B. Huang, Q. Wu, M. Zhang, and G. Wang, The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil, Renew. Energy 161, 1276 (2020).

    Article  Google Scholar 

  36. G. H. Chen, G. Y. Wang, C. L. Hu, B. Huang, and M. D. Zhang, Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach, Exp. Fluids 56, 32 (2015).

    Article  Google Scholar 

  37. M. Zhang, Q. Wu, G. Wang, B. Huang, X. Fu, and J. Chen, The flow regime and hydrodynamic performance for a pitching hydrofoil, Renew. Energy 150, 412 (2020).

    Article  Google Scholar 

  38. J. Xu, H. Sun, and S. Tan, Wake vortex interaction effects on energy extraction performance of tandem oscillating hydrofoils, J. Mech. Sci. Technol. 30, 4227 (2016).

    Article  Google Scholar 

  39. W. Jiang, D. Zhang, and Y. H. **e, Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil, Energy 115, 1010 (2016).

    Article  Google Scholar 

  40. M. J. Zhang, B. Huang, Z. D. Qian, T. Liu, Q. Wu, H. Zhang, and G. Wang, Cavitating flow structures and corresponding hydrodynamics of a transient pitching hydrofoil in different cavitation regimes, Int. J. Multiphase Flow 132, 103408 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengjie Zhang  (张孟杰) or Biao Huang  (黄 彪).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52109111, 52079004, and U20B2004), the Natural Science Foundation of Bei**g (Grant No. 3212023), and the State Key Program for Basic Research of China (Grant No. MKS20210003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Feng, F., Wang, M. et al. Investigation of hysteresis effect of cavitating flow over a pitching Clark-Y hydrofoil. Acta Mech. Sin. 38, 321382 (2022). https://doi.org/10.1007/s10409-022-09031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09031-x

Keywords

Navigation