Log in

Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An analysis is presented for the diffusiophoretic motion of a charged colloidal sphere located at the center of a charged spherical cavity filled with an electrolyte solution at the quasisteady state for the case of arbitrary electric double layers. The electrokinetic equations governing the ionic concentration, electric potential, and velocity distributions in the fluid are linearized with assumption that the system is slightly distorted from equilibrium. These linearized differential equations are solved using a perturbation method with the zeta potentials of the particle and cavity as the small perturbation parameters. An explicit formula for the diffusiophoretic velocity of the particle as a combination of the electrophoretic and chemiphoretic contributions valid for arbitrary values of \(\kappa a\) and \(a/b\) is obtained by balancing the electrostatic and hydrodynamic forces exerted on it, where \(\kappa\) is the Debye screening parameter, \(a\) is the radius of the particle, and \(b\) is the radius of the cavity. The effect of the charged cavity wall on the diffusiophoresis of the particle is interesting and can be significant. The contributions from the diffusioosmotic (electroosmotic and chemiosmotic) flow taking place along the cavity wall and from the wall-corrected diffusiophoretic force to the particle velocity are comparably important, and this diffusioosmotic flow can reverse the direction of diffusiophoresis. The particle velocity in general increases with an increase in \(\kappa a\) and decreases with an increase in \(a/b\), but exceptions exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abecassis B, Cottin-Bizonne C, Ybert C, Ajdari A, Bocquet L (2009) Osmotic manipulation of particles for microfluidic applications. New J Phys 11:075022

    Article  Google Scholar 

  • Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  • Brown A, Poon W (2014) Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10:4016–4027

    Article  Google Scholar 

  • Cevheri N, Yoda M (2014) Electrokinetically driven reversible banding of colloidal particles near the wall. Lab Chip 14:1391–1394

    Article  Google Scholar 

  • Chang YC, Keh HJ (2008) Diffusiophoresis and electrophoresis of a charged sphere perpendicular to one or two plane walls. J Colloid Interface Sci 322:634–653

    Article  Google Scholar 

  • Chen PY, Keh HJ (2005) Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. J Colloid Interface Sci 286:774–791

    Article  Google Scholar 

  • Chen WJ, Keh HJ (2013) Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness. J Phys Chem B 117:9757–9767

    Article  Google Scholar 

  • Chiu HC, Keh HJ (2017a) Electrophoresis and diffusiophoresis of a colloidal sphere with double-layer polarization in a concentric charged cavity. Microfluid Nanofluid 21:45

    Article  Google Scholar 

  • Chiu HC, Keh HJ (2017b) Diffusiophoresis of a charged particle in a microtube. Electrophoresis 38:2468–2478

    Article  Google Scholar 

  • Crawford GP (2000) A bright new page in portable displays. IEEE Spectr 37(10):40–46

    Article  Google Scholar 

  • Hatlo MM, Panja D, van Roij R (2011) Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow. Phys Rev Lett 107:068101

    Article  Google Scholar 

  • Huang PY, Keh HJ (2012) Diffusiophoresis of a spherical soft particle in electrolyte gradients. J Phys Chem B 116:7575–7589

    Article  Google Scholar 

  • Joo SW, Lee SY, Liu J, Qian S (2010) Diffusiophoresis of an elongated cylindrical nanoparticle along the axis of a nanopore. ChemPhysChem 11:3281–3290

    Article  Google Scholar 

  • Kar A, Chiang T-S, Rivera IO, Sen A, Velegol D (2015) Enhanced transport into and out of dead-end pores. ACS Nano 9:746–753

    Article  Google Scholar 

  • Keh HJ (2016) Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr Opin Colloid Interface Sci 24:13–22

    Article  Google Scholar 

  • Keh HJ, Chiou JY (1996) Electrophoresis of a colloidal sphere in a circular cylindrical pore. AIChE J 42:1397–1406

    Article  Google Scholar 

  • Keh HJ, Hsieh TH (2008) Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness. Langmuir 24:390–398

    Article  Google Scholar 

  • Keh HJ, Jan JS (1996) Boundary effects on diffusiophoresis and electrophoresis: motion of a colloidal sphere normal to a plane wall. J Colloid Interface Sci 183:458–475

    Article  Google Scholar 

  • Keh HJ, Wei YK (2000) Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir 16:5289–5294

    Article  Google Scholar 

  • Khair AS (2013) Diffusiophoresis of colloidal particles in neutral solute gradients at finite Péclet number. J Fluid Mech 731:64–94

    Article  MathSciNet  Google Scholar 

  • Lee TC, Keh HJ (2014) Electrophoresis of a spherical particle in a spherical cavity. Microfluid Nanofluid 16:1107–1115

    Article  Google Scholar 

  • Lee SY, Yalcin SE, Joo SW, Sharma A, Baysal O, Qian S (2010) The effect of axial concentration gradient on electrophoretic motion of a charged spherical particle in a nanopore. Microgravity Sci Technol 22:329–338

    Article  Google Scholar 

  • Li WC, Keh HJ (2016) Diffusiophoretic mobility of charge-regulating porous particles. Electrophoresis 37:2139–2146

    Article  Google Scholar 

  • Oshanin G, Popescu MN, Dietrich S (2017) Active colloids in the context of chemical kinetics. J Phys A Math Theor 50:134001

    Article  MathSciNet  Google Scholar 

  • Pawar Y, Solomentsev YE, Anderson JL (1993) Polarization effects on diffusiophoresis in electrolyte gradients. J Colloid Interface Sci 155:488–498

    Article  Google Scholar 

  • Prieve DC, Roman R (1987) Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J Chem Soc Faraday Trans 2 83:1287–1306

    Article  Google Scholar 

  • Prieve DC, Anderson JL, Ebel JP, Lowell ME (1984) Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J Fluid Mech 148:247–269

    Article  Google Scholar 

  • Rangharajan KK, Fuest M, Conlisk AT, Prakash S (2016) Transport of multicomponent, multivalent electrolyte solutions across nanocapillaries. Microfluid Nanofluid 20:54

    Article  Google Scholar 

  • Sen A, Ibele M, Hong Y, Velegol D (2009) Chemo and phototactic nano/microbots. Faraday Discuss 143:15–27

    Article  Google Scholar 

  • Shin S, Um E, Sabass B, Ault JT, Rahimi M, Warren PB, Stone HA (2016) Size-dependent control of colloid transport via solute gradients in dead-end channels. PNAS 113:257–261

    Article  Google Scholar 

  • Smith RE, Prieve DC (1982) Accelerated deposition of latex particles onto a rapidly dissolving steel surface. Chem Eng Sci 37:1213–1223

    Article  Google Scholar 

  • Tu HJ, Keh HJ (2000) Particle interactions in diffusiophoresis and electrophoresis of colloidal spheres with thin but polarized double layers. J Colloid Interface Sci 231:265–282

    Article  Google Scholar 

  • Velegol D, Garg A, Guha R, Kar A, Kumar M (2016) Origins of concentration gradients for diffusiophoresis. Soft Matter 12:4686–4703

    Article  Google Scholar 

  • Wang LJ, Keh HJ (2015) Diffusiophoresis of a colloidal cylinder in an electrolyte solution near a plane wall. Microfluid Nanofluid 19:855–865

    Article  Google Scholar 

  • Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    Article  Google Scholar 

  • Zhang X, Hsu W-L, Hsu J-P, Tseng S (2009) Diffusiophoresis of a soft spherical particle in a spherical cavity. J Phys Chem B 113:8646–8656

    Article  Google Scholar 

  • Zydney AL (1995) Boundary effects on the electrophoretic motion of a charged particle in a spherical cavity. J Colloid Interface Sci 169:476–485

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of the Republic of China (Taiwan) under the Grant MOST106-2221-E-002-167-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan J. Keh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: functions in Eqs. (18)–(20c)

Appendix: functions in Eqs. (18)–(20c)

In Eqs. (18) and (19),

$${F_{\mu 00}}(r)={F_{\psi 00}}(r)=\frac{1}{{{\chi _{}}}}\left( {\frac{r}{a}+\frac{{{a^2}}}{{2{r^2}}}} \right),$$
(35)
$$\begin{aligned} F_{{\mu ij}} (r) & = \frac{{Zer}}{{3kTa\chi _{{}} }}\Bigg\{ {\frac{{a^{3} A_{{\mu ij}} (a,b) + 2(1 - \chi )B_{{\mu ij}} (a,b)}}{{2\chi r^{3} }} + \frac{{1 - \chi }}{\chi }\left[ {A_{{\mu ij}} (a,b) + \frac{2}{{a^{3} }}B_{{\mu ij}} (a,b)} \right]} \\ & {\quad + \frac{1}{{r^{3} }}B_{{\mu ij}} (a,r) + A_{{\mu ij}} (r,b)} \Bigg\}, \\ \end{aligned}$$
(36)
$$\begin{aligned} {F_{\psi ij}}(r) & =\frac{1}{{{\kappa ^3}{r^2}}}\Bigg\{ {\frac{{[{g_{1+}}(\kappa a) - {{\text{e}}^{2\kappa a}}{g_{1 - }}(\kappa a)]{A_{\psi ij}}(a,b)+2{g_{1+}}(\kappa a){B_{\psi ij}}(a,b)}}{{{{\text{e}}^{2\kappa a}}{g_{2+}}(\kappa b){g_{1 - }}(\kappa a) - {{\text{e}}^{2\kappa b}}{g_{2 - }}(\kappa b){g_{1+}}(\kappa a)}}} \\ & \quad \times \left[ {{g_{2+}}(\kappa b)\gamma (\kappa r)+\frac{1}{2}\{ {g_{2+}}(\kappa b) - {{\text{e}}^{2\kappa b}}{g_{2 - }}(\kappa b)\} (\kappa r+1){{\text{e}}^{ - \kappa r}}} \right] \\ & \quad +\gamma (\kappa r){A_{\psi ij}}(r,b) - (\kappa r+1){{\text{e}}^{ - \kappa r}}{B_{\psi ij}}(r,b) \Bigg\} , \\ \end{aligned}$$
(37)

where (\(i\),\(j\)) equal to (0,1) or (1,0), \(\chi =1+{a^3}/2{b^3}\),

$${A_{\mu ij}}(x,y)=\int_{x}^{y} {\left( {1 - \frac{{{a^3}}}{{{r^3}}}} \right)\frac{{{\text{d}}{\psi _{{\text{eq}}ij}}}}{{{\text{d}}r}}} {\text{d}}r,$$
(38a)
$${B_{\mu ij}}(x,y)=\int_{x}^{y} {({r^3} - {a^3})\frac{{{\text{d}}{\psi _{{\text{eq}}ij}}}}{{{\text{d}}r}}} {\text{d}}r,$$
(38b)
$${A_{\psi ij}}(x,y)={\kappa ^2}\int_{x}^{y} {{{\text{e}}^{ - \kappa r}}(\kappa r+1){W_{ij}}(r){\text{d}}r} ,$$
(39a)
$${B_{\psi ij}}(x,y)={\kappa ^2}\int_{x}^{y} {\gamma (\kappa r){W_{ij}}(r){\text{d}}r} ,$$
(39b)
$${g_{1 \pm }}(x)=2 \pm 2x+{x^2},$$
(40a)
$${g_{2 \pm }}(x)=1 \pm x,$$
(40b)
$$\gamma (x)=\sinh x - x\cosh x,$$
(41)
$${W_{ij}}(r)=\left[ {{F_{\mu ij}}(r)+\frac{{Ze}}{{kT}}{\psi _{{\text{eq}}ij}}(r){F_{\mu 00}}(r)} \right].$$
(42)

In Eqs. (20a), (20b) and (20c),

$${F_{00r}}(r)={C_{001}}+{C_{002}}\frac{a}{r}+{C_{003}}{\left( {\frac{a}{r}} \right)^3}+{C_{004}}{\left( {\frac{r}{a}} \right)^2},$$
(43a)
$${F_{00\theta }}(r)= - {C_{001}} - \frac{{{C_{002}}}}{2}\frac{a}{r}+\frac{{{C_{003}}}}{2}{\left( {\frac{a}{r}} \right)^3} - 2{C_{004}}{\left( {\frac{r}{a}} \right)^2},$$
(43b)
$${F_{p00}}(r)={C_{002}}{\left( {\frac{a}{r}} \right)^2}+10{C_{004}}\frac{r}{a},$$
(43c)
$$\begin{aligned} {F_{ijr}}(r) & ={C_{ij1}}+{C_{ij2}}\frac{a}{r}+{C_{ij3}}{\left( {\frac{a}{r}} \right)^3}+{C_{ij4}}{\left( {\frac{r}{a}} \right)^2}+\frac{1}{5}{\left( {\frac{a}{r}} \right)^3}J_{{ij}}^{{(5)}}(r) \\ & \quad - \frac{a}{r}J_{{ij}}^{{(3)}}(r)+J_{{ij}}^{{(2)}}(r) - \frac{1}{5}{\left( {\frac{r}{a}} \right)^2}J_{{ij}}^{{(0)}}(r), \\ \end{aligned}$$
(44a)
$$\begin{aligned} {F_{ij\theta }}(r) & = - {C_{ij1}} - \frac{{{C_{ij2}}}}{2}\frac{a}{r}+\frac{{{C_{ij3}}}}{2}{\left( {\frac{a}{r}} \right)^3} - 2{C_{ij4}}{\left( {\frac{r}{a}} \right)^2}+\frac{1}{{10}}{\left( {\frac{a}{r}} \right)^3}J_{{ij}}^{{(5)}}(r) \\ & \quad +\frac{a}{{2r}}J_{{ij}}^{{(3)}}(r) - J_{{ij}}^{{(2)}}(r)+\frac{2}{5}{\left( {\frac{r}{a}} \right)^2}J_{{ij}}^{{(0)}}(r), \\ \end{aligned}$$
(44b)
$${F_{pij}}(r)={C_{ij2}}{\left( {\frac{a}{r}} \right)^2}+10{C_{ij4}}\frac{r}{a} - 2\frac{r}{a}J_{{ij}}^{{(0)}}(r) - {\left( {\frac{a}{r}} \right)^2}J_{{ij}}^{{(3)}}(r),$$
(44c)

where (\(i\),\(j\)) equals (0,1), (1,0), (0,2), (1,1), and (2,0),

$${C_{001}}=\frac{1}{\omega }a(4{a^4}+4{a^3}b+4{a^2}{b^2}+9a{b^3}+9{b^4}),$$
(45a)
$${C_{002}}= - \frac{6}{\omega }b({a^4}+{a^3}b+{a^2}{b^2}+a{b^3}+{b^4}),$$
(45b)
$${C_{003}}=\frac{2}{\omega }{b^3}({a^2}+ab+{b^2}),$$
(45c)
$${C_{004}}= - \frac{3}{\omega }{a^3}b(a+b),$$
(45d)
$$\begin{aligned} {C_{ij1}} & ={\left( {\frac{b}{a}} \right)^2}{C_{004}}J_{{ij}}^{{(0)}}(b)+\frac{1}{\omega }b{\text{(}}9{a^4}+9{a^3}b+4{a^2}{b^2}+4a{b^3}+4{b^4}{\text{)}}J_{{ij}}^{{(2)}}(b) \\ & \quad +\frac{a}{b}{C_{002}}J_{{ij}}^{{(3)}}(b)+{\left( {\frac{a}{b}} \right)^3}{C_{003}}J_{{ij}}^{{(5)}}(b), \\ \end{aligned}$$
(46a)
$${C_{ij2}}={C_{003}}J_{{ij}}^{{(0)}}(b)+{C_{002}}J_{{ij}}^{{(2)}}(b)+{C_{001}}J_{{ij}}^{{(3)}}(b)+{C_{004}}J_{{ij}}^{{(5)}}(b),$$
(46b)
$$\begin{aligned} {C_{ij3}} & = - \frac{6}{{5\omega }}{b^5}J_{{ij}}^{{(0)}}(b)+{C_{003}}J_{{ij}}^{{(2)}}(b)+{\left( {\frac{b}{a}} \right)^2}{C_{004}}J_{{ij}}^{{(3)}}(b) \\ & \quad - \frac{1}{{5\omega }}{a^3}(4{a^2} - 5ab - 5{b^2})J_{{ij}}^{{(5)}}(b), \\ \end{aligned}$$
(46c)
$$\begin{aligned} {C_{ij4}} & =\frac{1}{{5\omega }}{b^3}(5{a^2}+5ab - 4{b^2})J_{{ij}}^{{(0)}}(b)+{C_{004}}J_{{ij}}^{{(2)}}(b) \\ & \quad +{\left( {\frac{a}{b}} \right)^3}{C_{003}}J_{{ij}}^{{(3)}}(b) - \frac{6}{{5\omega }}{a^5}J_{{ij}}^{{(5)}}(b) , \\ \end{aligned}$$
(46d)
$$\omega ={{\text{(}}a - b{\text{)}}^3}{\text{(}}4{a^2}+7ab+4{b^2}{\text{),}}$$
(47)
$$J_{{ij}}^{{(n)}}(r)=\int_{a}^{r} {{{\left( {\frac{r}{a}} \right)}^n}{G_{ij}}(r){\text{d}}r} ,$$
(48)
$${G_{01}}(r)=\frac{{\varepsilon {\kappa ^2}{a^4}}}{{3Zer}}{F_{\mu 00}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}01}}}}{{{\text{d}}r}},$$
(49a)
$${G_{10}}(r)=\frac{{\varepsilon {\kappa ^2}{a^4}}}{{3Zer}}{F_{\mu 00}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}10}}}}{{{\text{d}}r}},$$
(49b)
$${G_{02}}(r)= - \frac{{\varepsilon {\kappa ^2}{a^4}}}{{3Zer}}{W_{01}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}01}}}}{{{\text{d}}r}},$$
(50a)
$${G_{11}}(r)= - \frac{{\varepsilon {\kappa ^2}{a^4}}}{{3Zer}}\left[ {{W_{01}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}10}}}}{{{\text{d}}r}}+{W_{10}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}01}}}}{{{\text{d}}r}}} \right],$$
(50b)
$${G_{20}}(r)= - \frac{{\varepsilon {\kappa ^2}{a^4}}}{{3Zer}}{W_{10}}(r)\frac{{{\text{d}}{\psi _{{\text{eq}}10}}}}{{{\text{d}}r}}.$$
(50c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, Y.C., Keh, H.J. Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric double layer thickness. Microfluid Nanofluid 22, 84 (2018). https://doi.org/10.1007/s10404-018-2102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2102-0

Keywords

Navigation