Log in

Fluid pum** and cells separation by DC-biased traveling wave electroosmosis and dielectrophoresis

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Fluid pum** in microchips using electrokinetic methods has been a hot area of research. This paper mainly investigates effects of DC offset imposed on traveling wave (TW) signal on electroosmotic flow above a spiral electrode array with 800 µm wavelength. The traveling wave voltage with different DC offsets was applied, and four cases were analyzed by superimposing consecutive images. Experiment results indicate that symmetric electrode array energized with DC-biased TW signal can not only generate a prominent improvement in flow rates, but also be capable of altering the flow direction by changing the polarity of electrical signal. Furthermore, such a device can also be used as an effective means to manipulate and separate PS microbeads and cells on their own for very small and non-flowing sample volumes in terms of the combination of the conventional dielectrophoresis (cDEP) forces and traveling wave DEP (twDEP) forces by properly choosing the parameters associated with the Clausius–Mossotti factor (K(w)). Through adjusting the applied frequencies, we successfully separated yeast cells from a mix containing PS microspheres based on the combination of cDEP and twDEP, providing new opportunities for integration with a charge-coupled device for various biomedical diagnostic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajdari A (2000) Pum** liquids using asymmetric electrode arrays. Phys Rev E 61:R45–R48. doi:10.1103/PhysRevE.61.R45

    Article  Google Scholar 

  • Ajdari A (2014) Electrokinetic ‘ratchet’ pumps for microfluidics. Appl Phys A 75:271–274. doi:10.1007/s003390201329

    Article  Google Scholar 

  • Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F, Yang X, Wang G (2013) Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7:11803. doi:10.1063/1.4774312

    Article  Google Scholar 

  • Arnold WM, Schwan HP, Zimmermann U (1987) Surface conductance and other properties of latex particles measured by electrorotation. J Phys Chem 91:5093–5098. doi:10.1021/j100303a043

    Article  Google Scholar 

  • Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6:1455–1461. doi:10.1039/b608092h

    Article  Google Scholar 

  • Brown AB, Smith CG, Rennie AR (2001) Pum** of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E Stat Nonlin Soft Matter Phys 63:016305. doi:10.1103/PhysRevE.63.016305

    Article  Google Scholar 

  • Cahill BP, Heyderman LJ, Gobrecht J, Stemmer A (2004) Electro-osmotic streaming on application of traveling-wave electric fields. Phys Rev E Stat Nonlin Soft Matter Phys 70:036305. doi:10.1103/PhysRevE.70.036305

    Article  Google Scholar 

  • Castellanos A, Ramos A, Gonzalez A, Green NG, Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584–2597. doi:10.1088/0022-3727/36/20/023

    Article  Google Scholar 

  • Cui L, Holmes D, Morgan H (2001) The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 22:3893–3901

    Article  Google Scholar 

  • Debesset S, Hayden CJ, Dalton C, Eijkel JC, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab Chip 4:396–400. doi:10.1039/b314123c

    Article  Google Scholar 

  • Fu X, Mavrogiannis N, Doria S, Gagnon Z (2015) Microfluidic pum**, routing and metering by contactless metal-based electro-osmosis. Lab Chip 15:3600–3608. doi:10.1039/c5lc00504c

    Article  Google Scholar 

  • Garcia-Sanchez P, Ramos A, Green NG, Morgan H (2008) Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements. Langmuir 24:9361–9369. doi:10.1021/la800423k

    Article  Google Scholar 

  • Garcia-Sanchez P, Ramos A, Gonzalez A, Green NG, Morgan H (2009) Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. Langmuir 25:4988–4997. doi:10.1021/la803651e

    Article  Google Scholar 

  • García-Sánchez P, Ramos A, Green NG, Morgan H (2008) Experiments on pum** of liquids using arrays of microelectrodes subjected to travelling wave potentials. J Phys Conf Ser 142:012055. doi:10.1088/1742-6596/142/1/012055

    Article  Google Scholar 

  • Gonzalez A, Ramos A, Green NG, Castellanos A, Morgan H (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E Stat Phys Plasma Fluids Relat Interdiscip Top 61:4019–4028

    Google Scholar 

  • Huang Y, Holzel R, Pethig R, **ao BW (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499

    Article  Google Scholar 

  • Islam N, Reyna J (2012) Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias. Electrophoresis 33:1191–1197. doi:10.1002/elps.201100544

    Article  Google Scholar 

  • Jia Y, Ren Y, Jiang H (2015) Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis 36:1744–1753. doi:10.1002/elps.201400565

    Article  Google Scholar 

  • Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22:33–42

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007a) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E Stat Nonlin Soft Matter Phys 75:021502. doi:10.1103/PhysRevE.75.021502

    Article  Google Scholar 

  • Kilic MS, Bazant MZ, Ajdari A (2007b) Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys Rev E Stat Nonlin Soft Matter Phys 75:021503. doi:10.1103/PhysRevE.75.021503

    Article  Google Scholar 

  • Lang Q, Wu Y, Ren Y, Tao Y, Lei L, Jiang H (2015) AC electrothermal circulatory pum** chip for cell culture. ACS Appl Mater Interfaces 7:26792–26801. doi:10.1021/acsami.5b08863

    Article  Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang H-C (2004) Electrokinetic micropump and micromixer design based on ac faradaic polarization. J Appl Phys 96:1730. doi:10.1063/1.1767286

    Article  Google Scholar 

  • Levitan JA, Devasenathipathy S, Studer V, Ben Y, Thorsen T, Squires TM, Bazant MZ (2005) Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Colloids Surf, A 267:122–132. doi:10.1016/j.colsurfa.2005.06.050

    Article  Google Scholar 

  • Lian M, Wu J (2009) Ultrafast micropum** by biased alternating current electrokinetics. Appl Phys Lett 94:064101. doi:10.1063/1.3080681

    Article  Google Scholar 

  • Liu W, Shao J, Ren Y, Liu J, Tao Y, Jiang H, Ding Y (2016) On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics 10:034105. doi:10.1063/1.4949771

    Article  Google Scholar 

  • Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77:516–525

    Article  Google Scholar 

  • Newman J, Thomas-Alyea KE (2004) Electrochemical Systems. Wiley, Hoboken

    Google Scholar 

  • Ng WY, Goh S, Lam YC, Yang C, Rodriguez I (2009a) DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9:802–809. doi:10.1039/b813639d

    Article  Google Scholar 

  • Ng WY, Lam YC, Rodriguez I (2009b) Experimental verification of Faradaic charging in ac electrokinetics. Biomicrofluidics 3:22405. doi:10.1063/1.3120273

    Article  Google Scholar 

  • Ng WY, Ramos A, Lam YC, Wijaya IP, Rodriguez I (2011) DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow. Lab Chip 11:4241–4247. doi:10.1039/c1lc20495e

    Article  Google Scholar 

  • Olesen LH, Bruus H, Ajdari A (2006) ac electrokinetic micropumps: the effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Phys Rev E Stat Nonlin Soft Matter Phys 73:056313. doi:10.1103/PhysRevE.73.056313

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, González A, Castellanos A (2005) Pum** of liquids with traveling-wave electroosmosis. J Appl Phys 97:084906. doi:10.1063/1.1873034

    Article  Google Scholar 

  • Ren Y, Jiang H, Yang H, Ramos A, García-Sánchez P (2009) Electrical manipulation of electrolytes with conductivity gradients in microsystems. J Electrostat 67:372–376. doi:10.1016/j.elstat.2008.12.023

    Article  Google Scholar 

  • Talary M, Burt J, Tame J, Pethig R (1996) Electromanipulation and separation of cells using travelling electric fields. J Phys D Appl Phys 29:2198

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration Science 298:580–584. doi:10.1126/science.1076996

    Google Scholar 

  • Wang X-B, Huang Y, Becker F, Gascoyne P (1994) A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J Phys D Appl Phys 27:1571

    Article  Google Scholar 

  • Wang XB, Huang Y, Wang X, Becker FF, Gascoyne PR (1997) Dielectrophoretic manipulation of cells with spiral electrodes. Biophys J 72:1887–1899. doi:10.1016/S0006-3495(97)78834-9

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    Article  Google Scholar 

  • Wu J (2006) Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans Nanotechnol 5:84–89. doi:10.1109/TNANO.2006.869645

    Article  Google Scholar 

  • Wu J (2008) AC electro-osmotic micropump by asymmetric electrode polarization. J Appl Phys 103:024907. doi:10.1063/1.2832624

    Article  Google Scholar 

  • Wu Y, Ren Y, Jiang H (2016a) Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow. Electrophoresis. doi:10.1002/elps.201600106

    Google Scholar 

  • Wu Y, Ren Y, Tao Y, Hou L, Hu Q, Jiang H (2016b) A novel micromixer based on the alternating current-flow field effect transistor. Lab Chip. doi:10.1039/c6lc01346e

    Google Scholar 

  • Wu Y, Ren Y, Tao Y, Hou L, Jiang H (2016c) Large-scale single particle and cell trap** based on rotating electric field induced-charge electroosmosis. Anal Chem 88:11791–11798. doi:10.1021/acs.analchem.6b03413

    Article  Google Scholar 

  • Yang Ng W, Ramos A, Cheong Lam Y, Rodriguez I (2012) Numerical study of dc-biased ac-electrokinetic flow over symmetrical electrodes. Biomicrofluidics 6:12817–1281710. doi:10.1063/1.3668262

    Article  Google Scholar 

  • Yunus NA, Nili H, Green NG (2013) Continuous separation of colloidal particles using dielectrophoresis. Electrophoresis 34:969–978. doi:10.1002/elps.201200466

    Article  Google Scholar 

  • Zhao Y, Yi UC, Cho SK (2007) Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics. J Microelectromech Syst 16:1472–1481. doi:10.1109/JMEMS.2007.906763

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51305106, 11672095 and 11372093), the Fundamental Research Funds for the Central Universities (Nos. HIT. NSRIF. 2014058 and HIT. IBRSEM. 201319), Self-Planned Task (Nos. 201510B and SKLRS201606C) of State Key Laboratory of Robotics and System (HIT) and the Programme of Introducing Talents of Discipline to Universities (No. B07018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Ren or Hongyuan Jiang.

Additional information

This article is part of the topical collection “2016 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Dalian, China” guest edited by Chun Yang, Carolyn Ren and **angchun Xuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ren, Y., Tao, Y. et al. Fluid pum** and cells separation by DC-biased traveling wave electroosmosis and dielectrophoresis. Microfluid Nanofluid 21, 38 (2017). https://doi.org/10.1007/s10404-017-1862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1862-2

Keywords

Navigation