Log in

Typical displacement behaviours of slope movements

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Understanding and quantifying the evolution of landslides are research topics that have always engaged researchers. Indeed, scientific literature provides a large number of contributions introducing and/or applying procedures, which are based on mechanical or phenomenological methods. The first ones are usually implemented to analyse the mechanical behaviour of a single complex phenomenon for which a consistent dataset is available. Phenomenological models are aimed at identifying common characteristics of landslides to be used for different purposes, such as forecasting the time of failure. This paper presents the implementation of a phenomenological model that allows the identification and quantification of well-defined dimensionless displacement trends for a large number of phenomena that are well documented in the literature. The analysed landslides involve different materials and are characterized by different stages of activity induced by seasonal and/or occasional triggering factors. The case studies include the well-known Vajont landslide, for which the obtained results show that the displacement trend was different from those usually characterizing occasionally reactivated landslides, since the beginning of the paroxysmal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso EE, Pinyol NM, Puzrin AM (2010) Catastrophic slide: Vaiont landslide, Italy, pp. 33-81. https://doi.org/10.1007/978-90-481-3538-7_2. In: Geomechanics of failures. Advanced topics. Springer Netherlands, Houten

  • Bertini T, Cugusi F, D’Elia B, Rossi-Doria M (1986) Lenti movimenti di versante nell’Abruzzo adriatico: caratteri e criteri di stabilizzazione. In: Associazione Geotecnica Italiana (ed), “La progettazione geotecnica per la stabilizzazione dei pendii”, Proceedings of 16th National Conference, Bologna, Italy, 14-17 May, vol. 1, CLEUP, Rome, Italy, pp. 91–100. (in Italian)

  • Binet S, Mudry J, Scavia C, Campus S, Bertrand C, Guglielmi Y (2007) In situ characterization of flows in a fractured unstable slope. Geomorphology 86(1-2):193–203. https://doi.org/10.1016/j.geomorph.2006.08.013

    Article  Google Scholar 

  • Bouissou S, Darnault R, Chemenda A, Rolland Y (2012) Evolution of gravity-driven rock slope failure and associated fracturing: geological analysis and numerical modelling. Tectonophysics 526:157–166. https://doi.org/10.1016/j.tecto.2011.12.010

    Article  Google Scholar 

  • Carlà T, Intrieri E, Di Traglia F, Nolesini T, Gigli G, Casagli N (2017) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14(2):517–534. https://doi.org/10.1007/s10346-016-0731-5

    Article  Google Scholar 

  • Cascini L, Calvello M, Grimaldi GM (2014) Displacement trends of slow-moving landslides: classification and forecasting. Journal of mountain science 11(3):592–606. https://doi.org/10.1007/s11629-013-2961-5

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. https://doi.org/10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Canadian Geotechnical Journal 40(1):176–191. https://doi.org/10.1139/t02-085

    Article  Google Scholar 

  • Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 60:127–146. https://doi.org/10.1016/j.geomorph.2003.07.015

    Article  Google Scholar 

  • Crosta GB, Chen H, Frattini P (2006) Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches. Engineering Geology 83(1-3):236–253. https://doi.org/10.1016/j.enggeo.2005.06.039

    Article  Google Scholar 

  • Crosta GB, Di Prisco C, Frattini P, Frigerio G, Castellanza R, Agliardi F (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11:747–764. https://doi.org/10.1007/s10346-013-0433-1

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington DC, USA, pp. 36–75

  • Emery JJ (1979) Simulation of slope creep. In: Voight B (ed) Developments in geotechnical engineering, rock slides & avalanches 14A. Elsevier, Amsterdam, pp 669–691. https://doi.org/10.1016/B978-0-444-41507-3.50027-1

    Chapter  Google Scholar 

  • Follacci JP, Guardia P, Ivaldi JP (1988) La Clapière landslide in its geodynamical setting. In: Bonnard C (ed) Proc. 5th Int. Symp. Landslides, Lausanne, Switzerland, 10-15 July, vol. 3, Balkema, Brookfield, USA, pp. 1323–1327

  • Follacci JP, Rochet L, Serratrice JF (1993) Glissement de La Clapière, St Etienne de Tinée, Synthèse des connaissances et actualisation des risques, rapp. 92/PP/UN/I/DRM/03/AI/01, 76 pp., Cent. Etud. Tech. de l’Equip., Nice, France (in French)

  • Fukuzono T (1985) A new method for predicting the failure time of slopes. In: Japan Landslide Society Committee for International Exchange of Landslide Technique (ed) Proceedings of 4th International Conference and Field Workshop on Landslides, Tokyo, Japan, 23-31 August, pp 145–150

  • Grimaldi GM (2008) Modelling the displacements of slow moving landslides. PhD thesis, University of Salerno, Fisciano, Italy

  • Helmstetter A, Sornette D, Grasso JR, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: application to Vaiont and La Clapière landslides. Journal of Geophysical Research 109(B2). https://doi.org/10.1029/2002JB002160

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • IGM, the Italian Military Geographical Institute: photogram 1011, flight strip XIII, sheet 23, date 27 August 1960. https://www.igmi.org/it/geoprodotti/foto-aeree/1960/TIFF_800_DPI_non_fotogrammetrico/fotogramma-1484584274.79

  • Keqiang H, Si**g W (2006) Double-parameter threshold and its formation mechanism of the colluvial landslide: **ntan landslide, China. Environmental geology 49(5):696–707. https://doi.org/10.1007/s00254-005-0108-x

    Article  Google Scholar 

  • Kilburn CR, Petley DN (2003) Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54(1-2):21–32. https://doi.org/10.1016/S0169-555X(03)00052-7

    Article  Google Scholar 

  • Leroueil S, Locat J, Vaunat J, Picarelli L, Lee H, Faure R (1996) Geotechnical characterization of slope movements. In: Senneset K (ed), Landslides, Proceedings 7th International Symposium Landslides, Trondheim, Norway, 17–21 June, vol. 1, Balkema, Rotterdam, The Netherlands, pp. 53–74

  • Lollino G, Arattano M, Allasia P, Giordan D (2006) Time response of a landslide to meteorological events. Natural Hazards and Earth System Science 6:179–184. https://doi.org/10.5194/nhess-6-179-2006

    Article  Google Scholar 

  • Musso A (1997) Limitazione nell’uso dei pendii con ridotto margine di sicurezza. In: Pellegrino A (ed) Interventi di stabilizzazione dei pendii, CISM Udine, pp 449-474 (In Italian)

  • Nonveiller E (1987) The Vajont reservoir slope failure. Engineering Geology 24:493–512. https://doi.org/10.1016/0013-7952(87)90081-0

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Secondi M, Crosta G, Di Prisco C, Frigerio G, Frattini P, Agliardi F (2011) Landslide motion forecasting by a dynamic visco-plastic model. Proceedings of Second World Landslide Forum (WLF 2), paper WLF2-(2011)-0571. Rome, 3-9 October 2011. Abstract Book (730 p.) F Catani, C Margottini, A Trigila, C Iadanza (eds) ISBN 9788844805159

  • Segalini A, Valletta A, Carri A (2018) Landslide time-of-failure forecast and alert threshold assessment: a generalized criterion. Engineering geology 245:72–80. https://doi.org/10.1016/j.enggeo.2018.08.003

    Article  Google Scholar 

  • Semenza E (2001) La storia del Vajont, raccontata dal geologo che ha scoperto la frana. Tecomproject, Ferrara. (in Italian)

  • Shuzui H (2001) Process of slip-surface development and formation of slipsurface clay in landslides in Tertiary volcanic rocks, Japan. Engineering Geology 61:199–220. https://doi.org/10.1016/S0013-7952(01)00025-4

    Article  Google Scholar 

  • Simeoni L, Mongiovì L (2007) Inclinometer monitoring of the Castelrotto landslide in Italy. Journal of Geotechnical and Geoenvironmental Engineering 136:653–666. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(653)

    Article  Google Scholar 

  • Singh A (1966) Creep phenomena in soils. PhD thesis, University of California, Berkeley, California

  • Suwa H, Mizuno T, Ishii T (2010) Prediction of a landslide and analysis of slide motion with reference to the 2004 Ohto slide in Nara, Japan. Geomorphology 124(3-4):157–163. https://doi.org/10.1016/j.geomorph.2010.05.003

    Article  Google Scholar 

  • Tacher L, Bonnard C, Laloui L, Le Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14. https://doi.org/10.1007/s10346-004-0038-9

    Article  Google Scholar 

  • Tommasi P, Pellegrini P, Boldini D, Ribacchi R (2006) Influence of rainfall regime on hydraulic conditions and movement rates in the overconsolidated clayey slope of the Orvieto hill (central Italy). Canadian geotechnical journal 43(1):70–86. https://doi.org/10.1139/t05-081

    Article  Google Scholar 

  • Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130. https://doi.org/10.1038/332125a0

    Article  Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243(4888):200–203. https://doi.org/10.1126/science.243.4888.200

    Article  Google Scholar 

  • Voight B, Kennedy BA (1979) Slope failure of 1967–1969, Chuquicamata mine, Chile. Developments in Geotechnical Engineering. 14B Rockslides and Avalanches 2 - Engineering sites, Elsevier, Amsterdam, pp 595–632. https://doi.org/10.1016/B978-0-444-41508-0.50025-9

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers whose comments contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Scoppettuolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scoppettuolo, M.R., Cascini, L. & Babilio, E. Typical displacement behaviours of slope movements. Landslides 17, 1105–1116 (2020). https://doi.org/10.1007/s10346-019-01327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01327-z

Keywords

Navigation