Log in

Meso-Scale Modeling for Effective Properties in Continuous Fiber-Reinforced Composites by State-Based Peridynamics

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This study demonstrates a homogenization approach via a modified state-based peridynamic (PD) method to predict the effective elastic properties of composite materials with periodic microstructure. The procedure of modeling the PD unit cell (UC) of continuous fiber-reinforced composite is presented. Periodic boundary conditions are derived and implemented through the Lagrange multiplier method. A matrix-dominated approach for modeling the interphase properties between dissimilar materials is proposed. The periodicity and continuity assumptions are employed to determine the stress and strain fields, as well as the effective elastic properties. The PD-UCs of square and hexagonal packs as well as the 0/90 laminate microstructure are modeled and compared with the analytical, numerical and experimental results from the literature. Good agreement of predicted effective properties can be observed. Unlike other PD homogenization approaches, the effective material properties can be directly and individually obtained from simple loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibson RF. Principles of composite material mechanics. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  2. **a Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct. 2003;40(8):1907–21. https://doi.org/10.1016/S0020-7683(03)00024-6.

    Article  MATH  Google Scholar 

  3. Suquet PM. Elements of homogenization theory for inelastic solid mechanics. Homogenization Tech Compos Med. 1987;272:193–279.

    Article  Google Scholar 

  4. Aboudi J. Mechanics of composites: a unified micromechanical approach; 1991.

  5. Paley M, Aboudi J. Micromechanical analysis of composites by the generalized cells model. Mech Mater. 1992;14(2):127–39. https://doi.org/10.1016/0167-6636(92)90010-B.

    Article  Google Scholar 

  6. Williams TO. A two-dimensional, higher-order, elasticity-based micromechanics model. Int J Solids Struct. 2005;42(3–4):971–1007. https://doi.org/10.1016/j.ijsolstr.2004.06.057.

    Article  MATH  Google Scholar 

  7. Yu W, Tang T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct. 2007;44(11–12):3738–55. https://doi.org/10.1016/j.ijsolstr.2006.10.020.

    Article  MathSciNet  MATH  Google Scholar 

  8. Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209. https://doi.org/10.1016/S0022-5096(99)00029-0.

    Article  MathSciNet  MATH  Google Scholar 

  9. Madenci E, Barut A, Phan N, editors. Peridynamic unit cell homogenization. 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; 2017; Grapevine, TX, United states: American Institute of Aeronautics and Astronautics Inc, AIAA.

  10. Madenci E, Barut A, Phan N. Peridynamic unit cell homogenization for thermoelastic properties of heterogenous microstructures with defects. Compos Struct. 2018;188:104–15. https://doi.org/10.1016/j.compstruct.2018.01.009.

    Article  Google Scholar 

  11. Madenci E, Yaghoobi A, Barut A, Phan N. Peridynamic unit cell for effective properties of complex microstructures with and without defects. Theor Appl Fract Mech. 2020;110:102835. https://doi.org/10.1016/j.tafmec.2020.102835.

    Article  Google Scholar 

  12. **a W, Oterkus E, Oterkus S. Peridynamic modelling of periodic microstructured materials. Proc Struct Integrity. 2020;28:820–8. https://doi.org/10.1016/j.prostr.2020.10.096.

    Article  Google Scholar 

  13. **a W, Galadima Y, Oterkus E, Oterkus S. Representative volume element homogenization of a composite material by using bond-based peridynamics. J Compos Biodegrad Polym. 2019;7:51–6. https://doi.org/10.12974/2311-8717.2019.07.7.

    Article  Google Scholar 

  14. Diyaroglu C, Madenci E, Phan N. Peridynamic homogenization of microstructures with orthotropic constituents in a finite element framework. Compos Struct. 2019;227:111334. https://doi.org/10.1016/j.compstruct.2019.111334.

    Article  Google Scholar 

  15. Diyaroglu C, Madenci E, Stewart RJ, Zoubi SS. Combined peridynamic and finite element analyses for failure prediction in periodic and partially periodic perforated structures. Compos Struct. 2019;229:111481. https://doi.org/10.1016/j.compstruct.2019.111481.

    Article  Google Scholar 

  16. Jenabidehkordi A, Abadi R, Rabczuk T. Computational modeling of meso-scale fracture in polymer matrix composites employing peridynamics. Compos Struct. 2020;253:112740. https://doi.org/10.1016/j.compstruct.2020.112740.

    Article  Google Scholar 

  17. Hu YL, Madenci E. Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct. 2016;153:139–75. https://doi.org/10.1016/j.compstruct.2016.05.063.

    Article  Google Scholar 

  18. Hu YL, Yu Y, Madenci E. Peridynamic modeling of composite laminates with material coupling and transverse shear deformation. Compos Struct. 2020;253:112760. https://doi.org/10.1016/j.compstruct.2020.112760.

    Article  Google Scholar 

  19. Sun CT, Vaidya RS. Prediction of composite properties from a representative volume element. Compos Sci Technol. 1996;56(2):171–9. https://doi.org/10.1016/0266-3538(95)00141-7.

    Article  Google Scholar 

  20. Aboudi J, Pindera M-J, Arnold S. Linear thermoelastic higher-order theory for periodic multiphase materials. J Appl Mech. 2001. https://doi.org/10.1115/1.1381005.

    Article  MATH  Google Scholar 

  21. Kamarul A, Kamarudin AEI. Periodic Boundary Condition Technique on Carbon Fibre Composites. In International Conference on Materials Physics and Mechanics 2017.

  22. Qian Y, Swanson SR. Experimental measurement of impact response in carbon/epoxy plates. AIAA J. 1990;28(6):1069–74. https://doi.org/10.2514/3.25168.

    Article  Google Scholar 

  23. Lee H-J, Saravanos DA. The effect of temperature dependent material properties on the response of piezoelectric composite materials. J Intell Mater Syst Struct. 1998;9(7):503–8. https://doi.org/10.1177/1045389X9800900702.

    Article  Google Scholar 

  24. Sertse HM, Goodsell J, Ritchey AJ, Pipes RB, Yu W. Challenge problems for the benchmarking of micromechanics analysis: level I initial results. J Compos Mater. 2018;52(1):61–80. https://doi.org/10.1177/0021998317702437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Hu.

Ethics declarations

Funding

This work is supported by the National Natural Science Foundation of China under Grant Nos.11902197 and 11972234 and is sponsored by Shanghai Sailing Program under Contract No.19YF1421700.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, Y., Mu, Z. et al. Meso-Scale Modeling for Effective Properties in Continuous Fiber-Reinforced Composites by State-Based Peridynamics. Acta Mech. Solida Sin. 34, 729–742 (2021). https://doi.org/10.1007/s10338-021-00239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00239-7

Keywords

Navigation