Log in

Genetic assessment of an isolated endemic Samango monkey (Cercopithecus albogularis labiatus) population in the Amathole Mountains, Eastern Cape Province, South Africa

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

The endemic Samango monkey subspecies (Cercopithecus albogularis labiatus) inhabits small discontinuous Afromontane forest patches in the Eastern Cape, KwaZulu-Natal midlands and southern Mpumalanga Provinces in South Africa. The subspecies is affected by restricted migration between forest patches which may impact on gene flow resulting in inbreeding and possible localized extinction. Current consensus, based on habitat quality, is that C. a. labiatus can be considered as endangered as the small forest patches they inhabit may not be large enough to sustain them. The aim of this study was to conduct a molecular genetic investigation to determine if the observed isolation has affected the genetic variability of the subspecies. A total of 65 Samango monkeys (including juveniles, subadults and adults) were sampled from two localities within the Hogsback area in the Amathole Mountains. Nuclear and mitochondrial DNA variation was assessed using 17 microsatellite markers and by sequencing the hypervariable 1 region (HVR1). Microsatellite data generated was used to determine population structure, genetic diversity and the extent of inbreeding. Sequences of the HVR1 were used to infer individual origins, haplotype sharing and haplotype diversity. No negative genetic factors associated with isolation such as inbreeding were detected in the two groups and gene flow between groups can be regarded as fairly high primarily as a result of male migration. This was in contrast to the low nuclear genetic diversity observed (H o = 0.45). A further reduction in heterozygosity may lead to inbreeding and reduced offspring fitness. Translocations and establishment of habitat corridors between forest patches are some of the recommendations that have emerged from this study which will increase long-term population viability of the subspecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JM, Miyamoto MM, Wu CH, Carter TE, Ungvari-Martin J, Magrini K, Chapman CA (2012) Primate DNA suggests long-term stability of an African rainforest. Ecol Evol 2:2829–2842

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth CP (1968) Taxonomic studies of Cercopithecus mitis wolf (East Africa). Nat Geog Soc Res Reports (1963 projects):37–51

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  PubMed  Google Scholar 

  • Butynski TM (1990) Comparative ecology of blue monkeys (Cercopithecus mitis) in high-and low-density subpopulations. Ecol Monogr 60:1–26

    Article  Google Scholar 

  • Butynski TM (2002) Conservation of the guenons: an overview of status, threats, and recommendations. In: Glenn ME, Cords M (eds) The guenons: diversity and adaptation in African monkeys. Developments in primatology: progress and prospects . Springer, Boston, pp 411–424

    Google Scholar 

  • Carlson AA, Isbell LA (2001) Causes and consequences of single-male and multimale mating in free-ranging patas monkeys, Erythrocebus patas. Anim Behav 62:1047–1058

    Article  Google Scholar 

  • Chang Z, Yang B, Vigilant L, Liu Z, Ren B, Yang J, **ang Z, Garber PA, Li M (2014) Evidence of male-biased dispersal in the endangered Sichuan snub-nosed monkey (Rhinopithexus roxellana). Am J Primatol 76:72–83

    Article  PubMed  Google Scholar 

  • Colyn M (1991) Zoogeographical importance of Zaire River basin for speciation (translated). Annalen der koninklijk Museum voor Midden-Afrika, Zool Wetenschappen, Tervuren, Belgium 264:1–250

    Google Scholar 

  • Dalton DL, Linden B, Wimberger K, Nupen LJ, Tordiffe AS, Taylor PJ, Madisha MT, Kotze A (2015) New insights into Samango monkey speciation in South Africa. PLoS One 10:e0117003

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, Vonholdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ekernas L, Cords M (2007) Social and environmental factors influencing natal dispersal in blue monkeys, Cercopithecus mitis stuhlmanni. Anim Behav 73:1009–1020

    Article  Google Scholar 

  • Ely B, Wilson JL, Jackson F, Jackson BA (2006) African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups. BMC Biol 4:1

    Article  Google Scholar 

  • Enstam KL, Isbell LA (2007) The guenons (Genus: Cercopithecus) and their allies: behavioral ecology of polyspecific associations. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger MA, Bearder SK (eds) Primates in perspective, 1st edn. Oxford University Press, Oxford, pp 252–273

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Everard DA, Hardy SD (1993) Composition, structure and dynamics of the Amatola forests. Report FOR-DEA 810. Division of Forest Science and Technology, CSIR, Pretoria

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Friedman Y, Daly B (2004) Red data book of the mammals of South Africa: a conservation assessment: conservation breeding specialist group southern Africa. Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust, Saxonwold, South Africa

    Google Scholar 

  • Gautier-Hion A, Colyn M, Gautier JP (1999) Natural history of Central African primates. Ecofac, Libreville, pp 43–46

    Google Scholar 

  • Goossens B, Chikhi L, Jalil MF, Ancrenaz M, Lackman-Ancrenaz I, Mohamed M, Andau P, Bruford MW (2005) Patterns of genetic diversity and migration in increasingly fragmented and declining orang-utan (Pongo pygmaeus) populations from Sabah, Malaysia. Mol Ecol 14:441–456

    Article  CAS  PubMed  Google Scholar 

  • Griffith B, Scott JM, Carpenter JW, Reed C (1989) Translocation as a species conservation tool: status and strategy. Science 245:477–480

    Article  CAS  PubMed  Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington

    Google Scholar 

  • Groves CP (2005) Geographic variation within eastern chimpanzees (Pan troglodytes cf. schweinfurthii Giglioli, 1872). Australas Primatol 17:19–46

    Google Scholar 

  • Grubb P, Butynski TM, Oates JF, Bearder SK, Disotell TR, Groves CP, Struhsaker TT (2003) Assessment of the diversity of African primates. Int J Primatol 24:1301–1357

    Article  Google Scholar 

  • Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Haus T, Roos C, Zinner D (2013) Discordance between spatial distributions of Y-chromosomal and mitochondrial haplotypes in African green monkeys (Chlorocebus spp.): a result of introgressive hybridization or cryptic diversity? Int J Primatol 34:986–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyns H, Ferguson, M, Pitcford W, Seydack A (1989) Bestuursplan: Oos-kaap woude. Unpublished report

  • Lawes MJ (1990) The distribution of the Samango monkey (Cercopithecus mitis erythrarchus peters, 1852 and Cercopithecus mitis labiatus, Geoffroy, 1843) and forest history in southern Africa. J Biogeogr 17:669–680

    Article  Google Scholar 

  • Lebigre C, Alatalo RV, Siitari H (2010) Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix). Mol Ecol 19:1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Low AB, Rebelo AG (1996) Vegetation of South Africa. Lesotho and Swaziland, Pretoria, p p27

    Google Scholar 

  • Melnick DJ, Hoelzer GA (1992) Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int J Primatol 13:379–393

    Article  Google Scholar 

  • Meyer D, Rinaldi ID, Ramlee H, Perwitasari-Farajallah D, Hodges JK, Roos C (2011) Mitochondrial phylogeny of leaf monkeys (gensu Presbytis, Eschscholtz, 1821) with implications for taxonomy and conservation. Mol Phylogenet Evol 59:311–319

    Article  PubMed  Google Scholar 

  • Napier PH (1981) Catalogue of primates in the British Museum (Natural History) and elsewhere in the British Isles. Part II: family Cercopithecidae, subfamily Cercopithecinae. British Museum (Natural History), London

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Oklander LI, Kowalewski MM, Corach D (2010) Genetic consequences of habitat fragmentation in black-and-gold howler (Alouatta caraya) populations from Northern Argentina. Int J Primatol 31:813–832

    Article  Google Scholar 

  • Park S (2001) Microsatellite toolkit. Department of Genetics, Trinity College, Dublin

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prugnolle F, De Meeûs T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reed DH, Briscoe DA, Frankham R (2002) Inbreeding and extinction: effects of environmental stress and lineages. Conserv Genet 3:301–307

    Article  CAS  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Skinner JD, Chimimba CT (2005) The mammals of the southern African sub-region. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson B, Wills D, Shipley P (2004) Micro-checker: software for identifying and correcting genoty** errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • White F (1983) The vegetation of Africa. United Nations Scientific and Cultural Organization, Paris

    Google Scholar 

  • Whitfield LS, Lovell-Badge R, Goodfellow PN (1993) Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364:713–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kirsten Wimberger and Dr. Adrian S.W Tordiffe for fieldwork conducted to obtain samples used in this study. We acknowledge the National Research Foundation (NRF) and the National Zoological Gardens of South Africa (NZG) for organizational core grant funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desire L. Dalton.

Ethics declarations

Ethical considerations

Ethical approval for this study was obtained from the Research Ethics & Scientific Committee (RESC, Project #2012/P12/08) of the National Zoological Gardens of South Africa (NZG) and by the Tshwane University of Technology’s (TUT) Animal Research Ethics Committee (Reference Number #AREC2014/06/001). All samples used in this project were stored at the National Zoological Gardens Biobank in Pretoria.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 299 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madisha, M.T., Dalton, D.L., Jansen, R. et al. Genetic assessment of an isolated endemic Samango monkey (Cercopithecus albogularis labiatus) population in the Amathole Mountains, Eastern Cape Province, South Africa. Primates 59, 197–207 (2018). https://doi.org/10.1007/s10329-017-0636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-017-0636-5

Keywords

Navigation