Log in

Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Polytheonamides are the most extensively modified ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) currently known. In RiPP biosynthesis, the processed peptide is usually released from a larger precursor by proteolytic cleavage to generate the bioactive terminal product of the pathway. For polytheonamides, which are members of a new RiPP family termed proteusins, we have recently shown that such cleavage is catalyzed by the cysteine protease PoyH acting on the precursor PoyA, both encoded in the polytheonamide biosynthetic gene cluster. We now report activity for PoyH under a variety of reaction conditions for different maturation states of PoyA and demonstrate a potential use of PoyH as a promiscuous protease to liberate and characterize RiPPs from other pathways. As a proof of concept, the identified recognition motif was introduced into precursors of the thiopeptide thiocillin and the lanthipeptide lichenicidin VK1, allowing for their site-specific cleavage with PoyH. Additionally, we show that PoyH cleavage is inhibited by PoyG, a previously uncharacterized chagasin-like protease inhibitor encoded in the polytheonamide gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160. https://doi.org/10.1039/c2np20085f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol 75:5451–5460. https://doi.org/10.1128/aem.00730-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berger A, Schechter I (1970) Map** the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc B Biol Sci 257:249–264. https://doi.org/10.1098/rstb.1970.0024

    Article  CAS  Google Scholar 

  4. Bowers AA, Acker MG, Koglin A, Walsh CT (2010) Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. J Am Chem Soc 132:7519–7527. https://doi.org/10.1021/ja102339q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowers AA, Acker MG, Young TS, Walsh CT (2012) Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc 134:10313–10316. https://doi.org/10.1021/ja302820x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burrage S, Raynham T, Williams G, Essex JW, Allen C, Cardno M, Swali V, Bradley M (2000) Biomimetic synthesis of lantibiotics. Chemistry (Easton) 6:1455–1466. https://doi.org/10.1002/(SICI)1521-3765(20000417)6:8%3c1455

    Article  CAS  Google Scholar 

  7. Buttle DJ (2013) Glycyl endopeptidase. In: Salvesen NDR (ed) Handbook of proteolytic enzymes. Academic Press, London, pp 1867–1870

    Chapter  Google Scholar 

  8. Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chatterjee C, Paul M, **e L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684. https://doi.org/10.1021/cr030105v

    Article  CAS  PubMed  Google Scholar 

  10. Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281:12824–12832. https://doi.org/10.1074/jbc.M513331200

    Article  CAS  PubMed  Google Scholar 

  11. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. https://doi.org/10.1016/j.cell.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cogan DP, Hudson GA, Zhang Z, Pogorelov TV, van der Donk WA, Mitchell DA, Nair SK (2017) Structural insights into enzymatic [4+2] aza -cycloaddition in thiopeptide antibiotic biosynthesis. Proc Natl Acad Sci 114:201716035. https://doi.org/10.1073/pnas.1716035114

    Article  CAS  Google Scholar 

  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  15. Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl H-G, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390. https://doi.org/10.1126/science.1226121

    Article  CAS  PubMed  Google Scholar 

  16. Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J (2017) Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem 9:387–395. https://doi.org/10.1038/nchem.2666

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs SW, Lackner G, Morinaka BI, Morishita Y, Asai T, Riniker S, Piel J (2016) A Lanthipeptide-like N-Terminal leader region guides peptide epimerization by radical SAM epimerases: implications for RiPP evolution. Angew Chem Int Ed Engl 55:12330–12333. https://doi.org/10.1002/anie.201602863

    Article  CAS  PubMed  Google Scholar 

  18. Furgerson Ihnken LA, Chatterjee C, van der Donk WA (2008) In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47:7352–7363. https://doi.org/10.1021/bi800278n

    Article  CAS  PubMed  Google Scholar 

  19. Gouet P, Courcelle E, Stuart D, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308. https://doi.org/10.1093/bioinformatics/15.4.305

    Article  CAS  PubMed  Google Scholar 

  20. Haft DH, Basu MK, Mitchell DA (2010) Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol 8:70. https://doi.org/10.1186/1741-7007-8-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamada T, Matsunaga S, Yano G, Fusetani N (2005) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127:110–118. https://doi.org/10.1021/ja045749e

    Article  CAS  PubMed  Google Scholar 

  22. Ishii S, Yano T, Ebihara A, Okamoto A, Manzoku M, Hayashi H (2010) Crystal structure of the peptidase domain of Streptococcus ComA, a bifunctional ATP-binding cassette transporter involved in the quorum-sensing pathway. J Biol Chem 285:10777–10785. https://doi.org/10.1074/jbc.M109.093781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishii S, Yano T, Hayashi H (2006) Expression and characterization of the peptidase domain of Streptococcus pneumoniae ComA, a bifunctional ATP-binding cassette transporter involved in quorum sensing pathway. J Biol Chem 281:4726–4731. https://doi.org/10.1074/jbc.M512516200

    Article  CAS  PubMed  Google Scholar 

  24. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. https://doi.org/10.1006/jmbi.1999.3091

    Article  CAS  PubMed  Google Scholar 

  25. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371. https://doi.org/10.1038/nprot.2009.2

    Article  CAS  PubMed  Google Scholar 

  26. Kotake Y, Ishii S, Yano T, Katsuoka Y, Hayashi H (2008) Substrate recognition mechanism of the peptidase domain of the quorum-sensing-signal–producing ABC transporter ComA from Streptococcus. Biochemistry 47:2531–2538. https://doi.org/10.1021/bi702253n

    Article  CAS  PubMed  Google Scholar 

  27. Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJM, Leenhouts K, Kuipers OP, Moll GN (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279:22176–22182. https://doi.org/10.1074/jbc.M312789200

    Article  CAS  PubMed  Google Scholar 

  28. Lackner G, Peters EE, Helfrich EJN, Piel J (2017) Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci 114:E347–E356. https://doi.org/10.1073/pnas.1616234114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lagedroste M, Smits SHJ, Schmitt L (2017) Substrate specificity of the secreted nisin leader peptidase NisP. Biochemistry 56:4005–4014. https://doi.org/10.1021/acs.biochem.7b00524

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk WA (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Natl Acad Sci 107:10430. https://doi.org/10.1073/pnas.0913677107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ljunggren A, Redzynia I, Alvarez-Fernandez M, Abrahamson M, Mort JS, Krupa JC, Jaskolski M, Bujacz G (2007) Crystal structure of the parasite protease inhibitor chagasin in complex with a host target cysteine protease. J Mol Biol 371:137–153. https://doi.org/10.1016/j.jmb.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  32. Loos M, Gerber C, Corona F, Hollender J, Singer H (2015) Accelerated isotope fine structure calculation using pruned transition trees. Anal Chem 87:5738–5744. https://doi.org/10.1021/acs.analchem.5b00941

    Article  CAS  PubMed  Google Scholar 

  33. Marchand JA, Peccoud J (2012) Gene synthesis. In: Peccoud J (ed) Methods in molecular biology. Humana, Totowa, pp 3–10

    Google Scholar 

  34. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:D205–D210. https://doi.org/10.1093/nar/gkn845

    Article  CAS  PubMed  Google Scholar 

  35. Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331. https://doi.org/10.1093/nar/gkh454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. https://doi.org/10.1093/nar/gkq1189

    Article  CAS  PubMed  Google Scholar 

  37. Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJN, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann H-W, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, **e Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng Y-Q, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJM, Ehling-Schulz M, Entian K-D, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon H-J, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O’Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet J-L, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631. https://doi.org/10.1038/nchembio.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montalbán-López M, Deng J, van Heel AJ, Kuipers OP (2018) Specificity and application of the lantibiotic protease NisP. Front Microbiol 9:1–16. https://doi.org/10.3389/fmicb.2018.00160

    Article  Google Scholar 

  39. Morinaka BI, Verest M, Freeman MF, Gugger M, Piel J (2016) An orthogonal D2O-based induction system that provides insights into d-Amino acid pattern formation by radical S-adenosylmethionine peptide epimerases. Angew Chemie Int Ed. https://doi.org/10.1002/anie.201609469

    Article  Google Scholar 

  40. Okeley NM, Zhu Y, van der Donk WA (2000) Facile chemoselective synthesis of dehydroalanine-containing peptides. Org Lett 2:3603–3606. https://doi.org/10.1021/ol006485d

    Article  CAS  PubMed  Google Scholar 

  41. Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18. https://doi.org/10.1038/nchembio.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ortega MA, Velásquez JE, Garg N, Zhang Q, Joyce RE, Nair SK, Van Der Donk WA (2014) Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem Biol 9:1718–1725. https://doi.org/10.1021/cb5002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rawlings ND, Barrett AJ (2013) The Clans and families of cysteine peptidases. In: Salvesen NDR (ed) Handbook of proteolytic enzymes. Academic Press, London, pp 1743–1773

    Chapter  Google Scholar 

  44. dos Reis FCG, Smith BO, Santos CC, Costa TFR, Scharfstein J, Coombs GH, Mottram JC, Lima APCA (2008) The role of conserved residues of chagasin in the inhibition of cysteine peptidases. FEBS Lett 582:485–490. https://doi.org/10.1016/j.febslet.2008.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shenkarev ZO, Finkina EI, Nurmukhamedova EK, Balandin SV, Mineev KS, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YV, Arseniev AS, Ovchinnikova TV (2010) Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry 49:6462–6472. https://doi.org/10.1021/bi100871b

    Article  CAS  PubMed  Google Scholar 

  46. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  47. Turk D, Gunčar G, Podobnik M, Turk B (1998) Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 379:137–147. https://doi.org/10.1515/bchm.1998.379.2.137

    Article  CAS  PubMed  Google Scholar 

  48. Völler GH, Krawczyk B, Ensle P, Süssmuth RD (2013) Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation. J Am Chem Soc 135:7426–7429. https://doi.org/10.1021/ja402296m

    Article  CAS  PubMed  Google Scholar 

  49. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. https://doi.org/10.1093/nar/gkv437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA (2015) Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4+2] cycloaddition. J Am Chem Soc 137:3494–3497. https://doi.org/10.1021/jacs.5b00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wiederanders B (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim Pol 50:691–713

    CAS  PubMed  Google Scholar 

  52. Wieland Brown LC, Acker MG, Clardy J, Walsh CT, Fischbach MA (2009) Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci U S A 106:2549–2553. https://doi.org/10.1073/pnas.0900008106

    Article  PubMed  PubMed Central  Google Scholar 

  53. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501. https://doi.org/10.1146/annurev.micro.61.080706.093501

    Article  CAS  PubMed  Google Scholar 

  54. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62. https://doi.org/10.1038/nature12959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JP acknowledges funding from the SNF (31003A_146992/1), the EU (SYNPEPTIDE), and the Helmut Horten Foundation. This work was supported by the Studienstiftung des Deutschen Volkes (PhD fellowship to MJH), the Human Frontier Science Program (Postdoctoral fellowship to MFF). We thank Alexander Brachmann and Brandon Morinaka for support with mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Piel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue “Natural Product Discovery and Development in the Genomic Era 2019”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helf, M.J., Freeman, M.F. & Piel, J. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis. J Ind Microbiol Biotechnol 46, 551–563 (2019). https://doi.org/10.1007/s10295-018-02129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-02129-3

Keywords

Navigation