Log in

Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Archer JAC, Solow-Cordero DE, Sinskey AJ (1991) A C-terminal deletion in Corynebacterium glutumicum homoserine dehydrogenase abolishes allosteric inhibition by l-threonine. Gene 107:53–59

    Article  CAS  PubMed  Google Scholar 

  2. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168

    Article  CAS  PubMed  Google Scholar 

  3. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Black S, Wright NG (1954) β-aspartate kinase and β-aspartyl-phosphate. J Biol Chem 213:27–38

    Google Scholar 

  5. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  PubMed  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  7. Chassagnole C, Raїs B, Quentin E, Fell DA, Mazat J (2001) An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochem J 356:415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, Meyer W, Rappert S, Sun J, Zeng AP (2011) Co-evolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 77:4352–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Z, Rappert S, Zeng AP (2015) Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor l-lysine. ACS Synth Biol 4:126–131

    Article  CAS  PubMed  Google Scholar 

  10. Colón GE, Nguyen TT, Jetten MSM, Sinskey AJ, Stephanopoulos G (1995) Production of l-isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 43:482–488

    Article  PubMed  Google Scholar 

  11. de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42:477–486

    Article  PubMed  Google Scholar 

  12. Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase l-threonine production. J Mol Microbiol Biotechnol 16:198–207

    Article  CAS  PubMed  Google Scholar 

  13. Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29:11–23

    Article  CAS  PubMed  Google Scholar 

  14. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 25:346–351

    Article  CAS  Google Scholar 

  16. Eggeling L, Bott M (2005) Handbook of Corybacterium glutamicum. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  17. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: l-lysine provided by Corybacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394

    Article  CAS  PubMed  Google Scholar 

  18. Follettie MT, Shin HK, Sinskey AJ (1988) Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 2:53–62

    Article  CAS  PubMed  Google Scholar 

  19. Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78(3):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999) Construction of an l-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 63:672–679

    Article  CAS  PubMed  Google Scholar 

  22. Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  PubMed  Google Scholar 

  23. James CL, Viola RE (2002) Production and characterization of bifunctional enzymes. Domain swap** to produce new bifunctional enzymes in the aspartate pathway. Biochemistry 41:3720–3725

    Article  CAS  PubMed  Google Scholar 

  24. Koros A, Varga ZS, Molnar P (2008) Simultaneous analysis of amino acids and amines as their ophthalaldehyde-ethanethiol-9-fluorenylmethyl chloroformate derivatives in cheese by high-performance liquid chromatography. J Chromatogr A 1203:146–152

    Article  CAS  PubMed  Google Scholar 

  25. Liebl W, Bayerl A, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65:299–304

    Article  CAS  Google Scholar 

  26. Miyajima R, Shiio I (1970) Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. III. Properties of homoserine dehydrogenase. J Biochem 68:311–319

    CAS  PubMed  Google Scholar 

  27. Möckel B, Eggeling L, Sahm H (1994) Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis. Mol Microbiol 13:833–842

    Article  PubMed  Google Scholar 

  28. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards l-isoleucine. Appl Environ Microbiol 61:4315–4320

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Morbach S, Sahm H, Eggeling L (1996) l-Isoleucine Production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62:4345–4351

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Park JH, Jang YS, Lee JW, Lee SY (2011) Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 108:1140–1147

    Article  CAS  PubMed  Google Scholar 

  31. Park JH, Oh JE, Lee KH, Kim JY, Lee SY (2012) Rational design of Escherichia coli for l-isoleucine production. ACS Synth Biol 1:532–540

    Article  CAS  PubMed  Google Scholar 

  32. Park SD, Lee JY, Sim SY, Kim Y, Lee HS (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 9:327–336

    Article  CAS  PubMed  Google Scholar 

  33. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85:491–506

    Article  CAS  PubMed  Google Scholar 

  35. Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Stable expression of hom-1thrB in Corynebacterium glutamicum and its effects on the carbon flux to threonine and related amino acids. Appl Environ Microbiol 60:126–132

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahm H, Eggeling L, Morbach S (1999) Construction of l-isoleucine overproducing strains of Corynebacterium glutamicum. Naturwissenschaften 86:33–38

    Article  CAS  Google Scholar 

  38. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  39. Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 64:849–859

    Google Scholar 

  40. Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyl transferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vogt M, Krumbach K, Bang WG, van Ooyen J, Noack S, Klein B, Bott M, Eggeling L (2015) The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 99:791–800

    Article  CAS  PubMed  Google Scholar 

  42. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  43. Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, **e X (2013) Enhancing l-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol 171:20–30

    Article  CAS  PubMed  Google Scholar 

  45. Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase l-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550

    Article  CAS  PubMed  Google Scholar 

  46. Yin L, Zhao J, Chen C, Hu X, Wang X (2014) Increasing l-isoleucine production in Corynebacterium glutamicum by enhancing the carbon flux in its biosynthesis pathway and NADPH supply. Biotechnol Bioprocess E 19:132–142

    Article  CAS  Google Scholar 

  47. Yoshida A, Tomita T, Kurihara T, Fushinobu S, Kuzuyama T, Nishiyama M (2007) Structural insight into concerted inhibition of α2β2-type aspartate kinase from Corynebacterium glutamicum. J Mol Biol 368:521–536

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida A, Tomita T, Kuzuyama T, Nishiyama M (2010) Mechanism of concerted inhibition of α2β2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 285:27477–27486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu X, ** H, Liu W, Wang Q, Qi Q (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Fact 14:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhao J, Hu X, Li Y, Wang X (2015) Overexpression of ribosome elongation factor G and recycling factor increases l-isoleucine production in Corybacterium glutamicum. Appl Microbiol Biotechnol 99:4795–4805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC31370131), National Key Basic Research Program of China (973 Program 2012CB725202) and Fundamental Research Funds for the Central Universities (JUDCF11025). We thank Prof. Makoto Nishiyama (University of Tokyo) for providing information on inactivation of intrinsic ribosome binding site for the β subunit of AK, and Ms. Shuying Wang (Jiangnan University) for providing technical advice on HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Zhao, Y., Zhao, J. et al. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis. J Ind Microbiol Biotechnol 43, 873–885 (2016). https://doi.org/10.1007/s10295-016-1763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1763-5

Keywords

Navigation