Log in

Small area estimation based on M-quantile models in presence of outliers in auxiliary variables

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

When using small area estimation models, the presence of outlying observations in the response and/or in the auxiliary variables can severely affect the estimates of the model parameters, which can in turn affect the small area estimates produced using these models. In this paper we propose an M-quantile estimator of the small area mean that is robust to the presence of outliers in the response variable and in the continuous auxiliary variables. To estimate the variability of this estimator we propose a non-parametric bootstrap estimator. The performance of the proposed estimator is evaluated by means of model- and design-based simulations and by an application to real data. In these comparisons we also include the extension of the Robust EBLUP able to down-weight the outliers in the auxiliary variables. The results show that in the presence of outliers in the auxiliary variables the proposed estimator outperforms its traditional version that takes into account the presence of outliers only in the response variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Battese G, Harter R, Fuller W (1988) An error component model for prediction of county crop areas using survey and satellite data. J Am Stat Assoc 83:28–36

    Article  Google Scholar 

  • Bianchi A, Fabrizi E, Salvati N, Tzavidis N (2015) M-quantile regression: diagnostics and parametric representation of the model. Working paper. http://www.sp.unipg.it/surwey/dowload/publications/24-mq-diagn.html

  • Bowman A (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360

    Article  MathSciNet  Google Scholar 

  • Bowman A, Hall P, Prvan T (1998) Bandwidth selection for the smoothing of distribution functions. Biometrika 85:799–808

    Article  MATH  MathSciNet  Google Scholar 

  • Breckling J, Chambers R (1988) M-quantiles. Biometrika 75(4):761–771

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll R, Pederson S (1993) On robustness in the logistic regression model. J R Stat Soc B 55:693–706

    MATH  MathSciNet  Google Scholar 

  • Chambers R (1986) Outlier robust finite population estimation. J Am Stat Ass 81:1063–1069

    Article  MATH  MathSciNet  Google Scholar 

  • Chambers R, Tzavidis N (2006) M-quantile models for small area estimation. Biometrika 93(2):255–268

    Article  MATH  MathSciNet  Google Scholar 

  • Chambers R, Chandra H, Tzavidis N (2011) On bias-robust mean squared error estimation for pseudo-linear small area estimators. Surv Methodol 37(2):153–170

    Google Scholar 

  • Chambers R, Chandra H, Salvati N, Tzavidis N (2014) Outlier robust small area estimation. J R Stat Soc Ser B 76:47–69

    Article  MathSciNet  Google Scholar 

  • Chambers R, Salvati N, Tzavidis N (2016) Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK. J R Stat Soc Ser A 179:453–479

    Article  MathSciNet  Google Scholar 

  • Cook R, Weisberg S (1980) Characterization of an empirical influence function for detecting influential cases in regression. Technometrics 22:495–508

    Article  MATH  MathSciNet  Google Scholar 

  • Dongmo Jiongo V, Haziza D, Duchesne P (2013) Controlling the bias of robust small area estimators. Biometrika 100:843–858

    Article  MATH  MathSciNet  Google Scholar 

  • ESS (2014) The European statistical system vision 2020. Technical report, Eurostat. http://ec.europa.eu/eurostat/documents/10186/756730/ESS-Vision-2020.pdf/8d97506b-b802-439e-9ea4-303e905f4255

  • Fellner W (1986) Robust estimation of variance components. Technometrics 28:51–60

    Article  MATH  MathSciNet  Google Scholar 

  • Filzmosera P, Maronna R, Werner M (2008) Outlier identification in high dimensions. Comput Stat Data Anal 52:1694–1711

    Article  MATH  MathSciNet  Google Scholar 

  • Gershunskaya J (2010) Robust small area estimation using a mixture model. In: Proceedings of the joint statistical meeting 2010. American Statistical Association

  • Ghosh M, Sinha K, Kim D (2006) Empirical and hierarchical bayesian estimation in finite population sampling under structural measurement error model. Scand J Stat 33(3):560–568

    Article  MATH  MathSciNet  Google Scholar 

  • Giusti C, Tzavidis N, Pratesi M, Salvati N (2014) Resistance to outliers of m-quantile and robust random effects small area models. Commun Stat Simul Comput 43(3):549–568

    Article  MATH  MathSciNet  Google Scholar 

  • Hall P, Maiti T (2006) On parametric bootstrap methods for small area prediction. J R Stat Soc Ser B (Stat Methodol) 68(2):221–238. doi:10.1111/j.1467-9868.2006.00541.x

    Article  MATH  MathSciNet  Google Scholar 

  • Hampel F, Ronchetti E, Rousseuw P, Stahel W (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. J Stat Softw 27(5). http://www.jstatsoft.org/v27/i05/

  • Hubert M, Rousseeuw P, Van Aelst S (2008) High-breakdown robust multivariate methods. Stat Sci 23(1):92–119

    Article  MATH  MathSciNet  Google Scholar 

  • Huggins R (1993) A robust approach to the analysis of repeated measures. Biometrics 49:255–268

    Article  MathSciNet  Google Scholar 

  • Jiang J, Lahiri P (2006) Mixed model prediction and small area estimation. Test 15:1–96

    Article  MATH  MathSciNet  Google Scholar 

  • Kokic P, Chambers R, Breckling J, Beare S (1997) A measure of production performance. J Bus Econ Stat 15(4):445–451

    Google Scholar 

  • Koller PJ, Stahel WA (2011) Sharpening Wald-type inference in robust regression for small samples. Comput Stat Data Anal 55(8):2504–2515

    Article  MathSciNet  Google Scholar 

  • Lombardía M, González-Manteiga W, Prada-Sánchez J (2003) Bootstrap** the Chambers–Dunstan estimate of finite population distribution function. J Stat Plan Inference 116:367–388

    Article  MATH  MathSciNet  Google Scholar 

  • Marchetti S, Tzavidis N, Pratesi M (2012) Non-parametric bootstrap mean squared error estimation for m-quantile estimators of small area averages, quantiles and poverty indicators. Comput Stat Data Anal 56:2889–2902

    Article  MATH  MathSciNet  Google Scholar 

  • Maronna AR, Martin R, Yohai V (2006) Robust statistics theory and methods. Wiley, London

    Book  MATH  Google Scholar 

  • Prasad N, Rao J (1990) The estimation of the mean squared error of small-area estimators. J Am Stat Assoc 85:163–171

    Article  MATH  MathSciNet  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rao J, Molina I (2015) Small area estimation. Wiley series in survey methodology. Wiley. https://books.google.it/books?id=i1B_BwAAQBAJ

  • Richardson A, Welsh A (1995) Robust estimation in the mixed linear model. Biometrics 51:1429–1439

    Article  MATH  Google Scholar 

  • Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Stat 9:66–78

    MATH  MathSciNet  Google Scholar 

  • Ruiz-Gazen A, Marie-Sainte S, Berro A (2010) Detecting multivariate outliers using projection pursuit with particle swarm optimization. In: Lechevallier Y, Saporta G (eds) Proceedings of COMPSTAT’2010. Physica-Verlag HD, pp 89–98. doi:10.1007/978-3-7908-2604-3_8

  • Sinha S, Rao J (2009) Robust small area estimation. Can J Stat 37(3):381–399

    Article  MATH  MathSciNet  Google Scholar 

  • Stone C (1974) Cross-validatory choice and assessment of statistical predictors (with discussion). J R Stat Soc 36:11–147

    Google Scholar 

  • Stone C (1984) An asymptotically optimal window selection rule for kernel density estimates. Ann Stat 12:1285–1297

    Article  MATH  MathSciNet  Google Scholar 

  • Torabi M, Datta G, Rao J (2009) Empirical Bayes estimation of small area means under a nested error linear regression model with measurement errors in the covariates. Scand J Stat 36:355–368

    Article  MATH  MathSciNet  Google Scholar 

  • Tzavidis N, Marchetti S, Chambers R (2010) Robust estimation of small area means and quantiles. Aust NZ J Stat 52(2):167–186

    Article  MATH  MathSciNet  Google Scholar 

  • Ybarra L, Lohr S (2008) Small area estimation when auxiliary information is measured with error. Biometrika 95:919–931

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Associate Editor, the referee and the Editor for their helpful comments which have led to substantial improvements in the paper. The work of Salvati has been developed under the support of the project PRIN-SURWEY http://www.sp.unipg.it/surwey/ (Grant 2012F42NS8, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Giusti.

Appendix

Appendix

See Table 11.

Table 11 Estimates (and \(\textit{rmse}\)) of the average yield of olive oil in the agrarian regions of Tuscany presented in Sect. 6. DIR are direct estimates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, S., Giusti, C., Salvati, N. et al. Small area estimation based on M-quantile models in presence of outliers in auxiliary variables. Stat Methods Appl 26, 531–555 (2017). https://doi.org/10.1007/s10260-017-0380-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-017-0380-4

Keywords

Navigation