Log in

Association between CLPTM1L–TERT rs401681 polymorphism and risk of pancreatic cancer: a meta-analysis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Telomere biology plays a critical and complex role in the initiation and progression of cancer. Several recent studies have provided evidence that rs401681 polymorphisms in intronic region of cleft lip and palate trans-membrane 1-like (CLPTM1L) gene sequence are associated with pancreatic cancer (PC) development, but a comprehensive synopsis is not available. We performed a meta-analysis of 6 case–control studies that included 8,253 pancreatic cancer cases and 37,646 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95 % confidence intervals (CIs). Overall, this meta-analysis showed that rs401681 allele T was associated with a significantly increased PC risk (OR = 1.17, 95 % CI = 1.12–1.22, P heterpgeneity = 0.596 and I 2 = 0). Similarly, in the subgroup analysis by ethnicity, a significantly increased risk was found among Asians (OR = 1.15, 95 % CI = 1.07–1.24, P heterpgeneity = 0.297 and I 2 = 8.0 %) and among Caucasian (OR = 1.13, 95 % CI = 1.02–1.26, P heterpgeneity = 0.385 and I 2 = 0). No publication bias was found in the present study. This meta-analysis suggests that T allele of CLPTM1L–telomerase reverse transcriptase rs401681 polymorphism is associated with an increased PC risk, especially among Chinese. Further large and well-designed studies are needed to confirm this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an update. Dig Dis. 2010;28:645–56.

    Article  PubMed  Google Scholar 

  2. Bednar F, Simeone DM. Pancreatic cancer stem cell biology and its therapeutic implications. J Gastroenterol. 2011;46:1345–52.

    Article  PubMed  Google Scholar 

  3. Hansel DE, Kern SE, Hruban RH. Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet. 2003;4:237–56.

    Article  CAS  PubMed  Google Scholar 

  4. Vaccaro V, Gelibter A, Bria E, et al. Molecular and genetic bases of pancreatic cancer. Curr Drug Targets. 2012;13:731–43.

    Article  CAS  PubMed  Google Scholar 

  5. Nakao M, Hosono S, Ito H, et al. Selected polymorphisms of base excision repair genes and pancreatic cancer risk in Japanese. J Epidemiol. 2012;22:477–83.

    Article  PubMed  Google Scholar 

  6. Krejs GJ. Pancreatic cancer: epidemiology and risk factors. Dig Dis. 2010;28:355–8.

    Article  PubMed  Google Scholar 

  7. Luo J, Iwasaki M, Inoue M, et al. Body mass index, physical activity and the risk of pancreatic cancer in relation to smoking status and history of diabetes: a large-scale population-based cohort study in Japan—the JPHC study. Cancer Causes Control. 2007;18:603–12.

    Article  PubMed  Google Scholar 

  8. Wang Y, Broderick P, Webb E, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rafnar T, Sulem P, Stacey SN, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41:221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stacey SN, Sulem P, Masson G, et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009;41:909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petersen GM, Amundadottir L, Fuchs CS, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42:224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21:349–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomez DE, Armando RG, Farina HG, et al. Telomere structure and telomerase in health and disease (review). Int J Oncol. 2012;41:1561–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y. A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun. 2001;280:1148–54.

    Article  CAS  PubMed  Google Scholar 

  15. Wu C, Miao X, Huang L, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet. 2012;44:62–6.

    Article  CAS  Google Scholar 

  16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harsha HC, Kandasamy K, Ranganathan P, et al. A compendium of potential biomarkers of pancreatic cancer. PLoS Med. 2009;6:e1000046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer AS, Keller A, Costello E, et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One. 2012;7:e34151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene. 2013;32:5253–60.

    Article  CAS  PubMed  Google Scholar 

  22. Iacobuzio-Donahue CA, Velculescu VE, Wolfgang CL, Hruban RH. Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing. Clin Cancer Res. 2012;18:4257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McGrath M, Wong JY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev. 2007;16:815–9.

    Article  CAS  PubMed  Google Scholar 

  24. Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99:1385–9.

    Article  CAS  PubMed  Google Scholar 

  25. Risques RA, Vaughan TL, Li X, et al. Leukocyte telomere length predicts cancer risk in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 2007;16(26):49–55.

    Google Scholar 

  26. Hou L, Savage SA, Blaser MJ, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18:3103–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willeit P, Willeit J, Mayr A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA. 2010;304:69–75.

    Article  CAS  PubMed  Google Scholar 

  28. Willeit P, Willeit J, Kloss-Brandstatter A, Kronenberg F, Kiechl S. Fifteen-year follow-up of association between telomere length and incident cancer and cancer mortality. JAMA. 2011;306:42–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kobitsu K, Tsutsumi M, Tsujiuchi T, et al. Shortened telomere length and increased telomerase activity in hamster pancreatic duct adenocarcinomas and cell lines. Mol Carcinog. 1997;1(8):153–9.

    Article  Google Scholar 

  30. Kuniyasu H, Kitadai Y, Mieno H, Yasui W. Helicobactor pylori infection is closely associated with telomere reduction in gastric mucosa. Oncology. 2003;65:275–82.

    Article  PubMed  Google Scholar 

  31. van Heek NT, Meeker AK, Kern SE, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol. 2002;161:1541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rizzato C, Campa D, Giese N, et al. Pancreatic cancer susceptibility loci and their role in survival. PLoS One. 2011;6:e27921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Willis JA, Olson SH, Orlow I, et al. A replication study and genome-wide scan of single-nucleotide polymorphisms associated with pancreatic cancer risk and overall survival. Clin Cancer Res. 2012;18:3942–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu C, Wang Y, Huang H, Wang C, Zhang H, Kong Y, Zhang H. Association between CLPTM1L–TERT rs401681 polymorphism and pancreatic cancer risk among Chinese Han population. Tumour Biol. 2014;35(6):5453–7. doi:10.1007/s13277-014-1711-9.

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CL., Zang, XX., Wang, C. et al. Association between CLPTM1L–TERT rs401681 polymorphism and risk of pancreatic cancer: a meta-analysis. Clin Exp Med 15, 477–482 (2015). https://doi.org/10.1007/s10238-014-0316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-014-0316-3

Keywords

Navigation