Log in

Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms (\(r = 0.98\)) and good agreement on porcine cartilage samples (\(r = 0.76\)). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of \(12.1\pm 5.5\) and \(8.5\pm 5.9\,\hbox {MPa}\) (\(p<0.05\)), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abedian R, Willbold E, Becher C, Hurschler C (2013) In vitro electro-mechanical characterization of human knee articular cartilage of different degeneration levels: a comparison with ICRS and Mankin scores. J Biomech 46(7):1328–1334

    Article  Google Scholar 

  • Appleyard RC, Swain MV, Khanna S, Murrell GAC (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys Med Biol 46(2):541

    Article  Google Scholar 

  • Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42(9):1163–1176

    Article  Google Scholar 

  • Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion: Zweiter Teil: Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion, Z Zellforsch 2:783–862

  • Chahine N, Wang C, Hung C, Ateshian G (2004) Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J Biomech 37(8):1251–1261

    Article  Google Scholar 

  • Changoor A, Fereydoonzad L, Yaroshinsky A, Buschmann MD (2010) Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage. J Biomech Eng 132(6):064502

    Article  Google Scholar 

  • Cheng S, Clarke EC, Bilston LE (2009) The effects of preconditioning strain on measured tissue properties. J Biomech 42(9):1360–1362

    Article  Google Scholar 

  • Duda GN, Kleemann RU, Bluecher U, Weiler A (2004) A new device to detect early cartilage degeneration. Am J Sports Med 32(3):693–698

    Article  Google Scholar 

  • Föhr P, Hautmann V, Prodinger P, Pohlig F, Kaddick C, Burgkart R (2012) Hochdynamisches Prüfsystem zur biomechanischen Charakterisierung von Knorpel und seinen Regeneraten. Der Orthopäde 41(10):820–826

    Article  Google Scholar 

  • Galle J, Bader A, Hepp P, Grill W, Fuchs B, Käs J, Krinner A, MarquaB B, Müller K, Schiller J, Schulz R, von Buttlar M, von der Burg E, Zscharnack M, Löffler M (2010) Mesenchymal stem cells in cartilage repair: state of the art and methods to monitor cell growth, differentiation and cartilage regeneration. Curr Med Chem 17(21):2274–2291

    Article  Google Scholar 

  • Gelse K, Olk A, Eichhorn S, Swoboda B, Schoene M, Raum K (2010) Quantitative ultrasound biomicroscopy for the analysis of healthy and repair cartilage tissue. Eur Cell Mater 19:58–71

    Article  Google Scholar 

  • Giese U (2014) Aging behavior of elastomers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–7

    Google Scholar 

  • Gu WY, Lai WM, Mow VC (1993) Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J Biomech 26(6):709–723

    Article  Google Scholar 

  • Hayes W, Keer L, Herrmann G, Mockros L (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551

    Article  Google Scholar 

  • Hosseini SM, Veldink MB, Ito K, Donkelaar CCV (2013) Is collagen fiber damage the cause of early softening in articular cartilage? Osteoarthr Cartilage 21(1):136–143

    Article  Google Scholar 

  • Hunziker EB, Lippuner K, Keel MJB, Shintani N (2015) An educational review of cartilage repair: precepts & practice myths & misconceptions progress & prospects. Osteoarthr Cartilage 23(3):334–350

    Article  Google Scholar 

  • Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK (2008) Stress–relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41(9):1978–1986

    Article  Google Scholar 

  • Jurvelin JS, Räsänen T, Kolmonens P, Lyyra T (1995) Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech 28(2):231–235

    Article  Google Scholar 

  • Kock LM, Schulz RM, van Donkelaar CC, Thümmler CB, Bader A, Ito K (2009) RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs. J Biomech 42(13):2177–2182

    Article  Google Scholar 

  • Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35(7):903–909

    Article  Google Scholar 

  • Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36(9):1373–1379

    Article  Google Scholar 

  • Laasanen MS, Töyräs J, Hirvonen J, Saarakkala S, Korhonen RK, Nieminen MT, Kiviranta I, Jurvelin JS (2002) Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol Meas 23:491–503

    Article  Google Scholar 

  • Laasanen M, Töyräs J, Korhonen R, Rieppo J, Saarakkala S, Nieminen M, Hirvonen J, Jurvelin J (2003) Biomechanical properties of knee articular cartilage. Biorheology 40(1):133–140

    Google Scholar 

  • Lau JC, Li-Tsang CW, Zheng Y (2005) Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. Burns 31(4):445–452

    Article  Google Scholar 

  • Li LP, Herzog W (2004) Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. J Biomech 37(3):375–382

    Article  Google Scholar 

  • Liukkonen J, Lehenkari P, Hirvasniemi J, Joukainen A, Virn T, Saarakkala S, Nieminen MT, Jurvelin JS, Töyräs J (2014) Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo. Ultrasound Med Biol 40(9):2039–2047

    Article  Google Scholar 

  • Lötjönen P, Julkunen P, Töyräs J, Lammi MJ, Jurvelin JS, Nieminen HJ (2009) Strain-dependent modulation of ultrasound speed in articular cartilage under dynamic compression. Ultrasound Med Biol 35(7):1177–1184

    Article  Google Scholar 

  • Lu XL, Mow VC (2008) Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exer 40(2):193–199

    Article  Google Scholar 

  • Lu XL, Wan LQ, Edward Guo X, Mow VC (2010) A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J Biomech 43(4):673–679

    Article  Google Scholar 

  • Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17(5):395–399

    Article  Google Scholar 

  • Männicke N, Schöne M, Oelze M, Raum K (2014) Articular cartilage degeneration classification by means of high-frequency ultrasound. Osteoarthr Cartilage 22(10):1577–1582

    Article  Google Scholar 

  • Mansour JM, Gu DWM, Chung CY, Heebner J, Althans J, Abdalian S, Schluchter MD, Liu Y, Welter JF (2014) Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor. Ann Biomed Eng 42(10):2190–2202

    Article  Google Scholar 

  • Miller GJ, Morgan EF (2010) Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales. Osteoarthr Cartilage 18(8):1051–1057

    Article  Google Scholar 

  • Moody HR, Brown CP, Bowden JC, Crawford RW, McElwain DLS, Oloyede AO (2006) In vitro degradation of articular cartilage: does trypsin treatment produce consistent results? J Anat 209(2):259–267

    Article  Google Scholar 

  • Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4(1):175–209

    Article  Google Scholar 

  • Mow VC, Holmes MH, Michael Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394

    Article  Google Scholar 

  • Mow VC, Gibbs M, Lai W, Zhu W, Athanasiou K (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22(8–9):853–861

    Article  Google Scholar 

  • Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362

    Article  Google Scholar 

  • Niederauer GG, Niederauer GM, Cullen LC, Athanasiou KA, Thomas JB, Niederauer MQ (2004) Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng 32(3):352–359

    Article  Google Scholar 

  • Nieminen HJ, Töyräs J, Laasanen MS, Jurvelin JS (2006) Acoustic properties of articular cartilage under mechanical stress. Biorheology 43(3–4):523–535

    Google Scholar 

  • Nieminen HJ, Julkunen P, Töyräs J, Jurvelin JS (2007) Ultrasound speed in articular cartilage under mechanical compression. Ultrasound Med Biol 33(11):1755–1766

    Article  Google Scholar 

  • Patwari P, Cheng DM, Cole AA, Kuettner KE, Grodzinsky AJ (2007) Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech Model Mechan 6(1–2):83–89

    Article  Google Scholar 

  • Pesavento A, Perrey C, Krueger M, Ermert H (1999) A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans Ultrason Ferrelectr Freq Control 46(5):1057–1067

    Article  Google Scholar 

  • Raum K, Schöne M, Varga P (2013) Ultrasonic palpator, measurement system and kit comprising the same, method for determining a property of an object, method for operating and method for calibrating a palpator. EP Patent App. EP20,130,786,433

  • Saarakkala S, Laasanen MS, Jurvelin JS, Törrönen K, Lammi MJ, Lappalainen R, Töyräs J (2003) Ultrasound indentation of normal and spontaneously degenerated bovine articular cartilage. Osteoarthr Cartilage 11(9):697–705

    Article  Google Scholar 

  • Saarakkala S, Töyräs J, Hirvonen J, Laasanen MS, Lappalainen R, Jurvelin JS (2004) Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med Biol 30(6):783–792

    Article  Google Scholar 

  • Salarian A (2016) Intraclass Correlation Coefficient (ICC). MATLAB Central File Exchange. http://ch.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient--icc-. Retrieved 13 Jan 2017

  • Schöne M, Männicke N, Gottwald M, Göbel F, Raum K (2013) 3-D high-frequency ultrasound improves the estimation of surface properties in degenerated cartilage. Ultrasound Med Biol 39(5):834–844

    Article  Google Scholar 

  • Schöne M, Männicke N, Somerson JS, Marqua B, Henkelmann R, Aigner T, Raum K, Schulz RM (2016) 3d ultrasound biomicroscopy for assessment of cartilage repair tissue: volumetric characterisation and correlation to established classification systems. Eur Cell Mater 31:119–135

    Article  Google Scholar 

  • Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36(4–5):539–568

    Article  Google Scholar 

  • Silver FH, Bradica G (2002) Mechanobiology of cartilage: how do internal and external stresses affect mechanochemical transduction and elastic energy storage? Biomech Model Mechan 1(3):219–238

    Article  Google Scholar 

  • Spahn G, Plettenberg H, Kahl E, Klinger HM, Mückley T, Hofmann GO (2007) Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet Disord 8(1):47

    Article  Google Scholar 

  • Spahn G, Klinger HM, Hofmann GO (2009) How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons. Arch Orthop Trauma Surg 129(8):1117–1121

    Article  Google Scholar 

  • Spahn G, Klinger HM, Baums M, Pinkepank U, Hofmann GO (2011) Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch Orthop Trauma Surg 131(3):377–381

    Article  Google Scholar 

  • Szarko M, Muldrew K, Bertram JE (2010) Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC Musculoskelet Disord 11:231

    Article  Google Scholar 

  • Töyräs J, Laasanen MS, Saarakkala S, Lammi MJ, Rieppo J, Kurkijärvi J, Lappalainen R, Jurvelin JS (2003) Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med Biol 29(3):447–454

    Article  Google Scholar 

  • Turunen SM, Lammi MJ, Saarakkala S, Han SK, Herzog W, Tanska P, Korhonen RK (2012) The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge. Biomech Model Mechanobiol 12(3):417–429

    Article  Google Scholar 

  • Tzschätzsch H, Elgeti T, Rettig K, Kargel C, Klaua R, Schultz M, Braun J, Sack I (2012) In vivo time harmonic elastography of the human heart. Ultrasound Med Biol 38(2):214–222

  • Uchio Y, Ochi M, Adachi N, Kawasaki K, Iwasa J (2002) Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor. Med Eng Phys 24(6):431–435

    Article  Google Scholar 

  • Wang H, Ateshian GA (1997) The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech 30(8):771–776

    Article  Google Scholar 

  • Zhang M, Zheng Y, Mak AF (1997) Estimating the effective Young’s modulus of soft tissues from indentation testsnonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys 19(6):512–517

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the team of GAMPT mbH for the collaboration within this project and the provision of the ultrasound hardware. The authors thank Dag Wulsten (Julius Wolff Institute) for technical support with the material testing machine.

Funding This study was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) as a ZIM cooperation project (KF2744004LW3). RMS was funded by the Free State of Saxony within the framework of research funding of biotechnology and life sciences (Grant 100243759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Raum.

Ethics declarations

Ethical standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 20822 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöne, M., Schulz, R.M., Tzschätzsch, H. et al. Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity. Biomech Model Mechanobiol 16, 1171–1185 (2017). https://doi.org/10.1007/s10237-017-0880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0880-z

Keywords

Navigation